An analysis of a fuzzy dissimilarity measure to perform Escherichia coli source tracking

Hyo-Jin Suh, J. Keller, C. Carson
{"title":"An analysis of a fuzzy dissimilarity measure to perform Escherichia coli source tracking","authors":"Hyo-Jin Suh, J. Keller, C. Carson","doi":"10.1109/FUZZ.2003.1206540","DOIUrl":null,"url":null,"abstract":"To identify the source of Escherichia coli (E.coli) fecal bacterial contamination, we propose a fuzzy dissimilarity measure to calculate the similarity between the E.coli DNA patterns. The fuzzy dissimilarity measure preserves the dimension of the DNA patterns and at the same time allows variation among same host patterns. The fuzzy dissimilarity measure produces a dissimilarity matrix, a form of relational data. For classification of this type of data representation we present a weighted k-nearest neighbor algorithm. The weighted k.nearest neighbor technique uses the classical k-nearest neighbor rule but solves the problem of 'tie' between multi-classes. In addition, we suggest an ensemble data set method for sample sets with a large range of class sizes. The proposed system showed potential as a stable system in detecting fecal bacterial hosts and as a base for future studies in interpreting DNA patterns.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To identify the source of Escherichia coli (E.coli) fecal bacterial contamination, we propose a fuzzy dissimilarity measure to calculate the similarity between the E.coli DNA patterns. The fuzzy dissimilarity measure preserves the dimension of the DNA patterns and at the same time allows variation among same host patterns. The fuzzy dissimilarity measure produces a dissimilarity matrix, a form of relational data. For classification of this type of data representation we present a weighted k-nearest neighbor algorithm. The weighted k.nearest neighbor technique uses the classical k-nearest neighbor rule but solves the problem of 'tie' between multi-classes. In addition, we suggest an ensemble data set method for sample sets with a large range of class sizes. The proposed system showed potential as a stable system in detecting fecal bacterial hosts and as a base for future studies in interpreting DNA patterns.
一种用于大肠杆菌源跟踪的模糊不相似性测度分析
为了确定大肠杆菌(E.coli)粪便细菌污染的来源,我们提出了一种模糊不相似度量来计算大肠杆菌DNA模式之间的相似性。模糊不相似度量保留了DNA模式的维度,同时允许相同宿主模式之间的差异。模糊不相似度量产生不相似矩阵,这是关系数据的一种形式。对于这类数据表示的分类,我们提出了加权k近邻算法。加权k近邻技术使用经典的k近邻规则,但解决了多类之间的“平局”问题。此外,我们建议对类大小范围较大的样本集使用集成数据集方法。该系统显示出作为检测粪便细菌宿主的稳定系统的潜力,并为未来解释DNA模式的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信