Application of Hurst parameter and fuzzy logic for denial of service attack detection

Supriya M. Pharande, Priyanka Pawar, P. Wani, A. Patki
{"title":"Application of Hurst parameter and fuzzy logic for denial of service attack detection","authors":"Supriya M. Pharande, Priyanka Pawar, P. Wani, A. Patki","doi":"10.1109/IADCC.2015.7154823","DOIUrl":null,"url":null,"abstract":"Normal legitimate network traffic on both LANs and wide area IP networks has self-similarity feature i.e. scale invariance property. Superimposition of legitimate traffic and high intensity non-self-similar traffic results into degradation in self-similarity of normal traffic. Rescaled range method is used to calculate Hurst parameter and its deviation from normal value. Two inputs and one output fuzzy logic block is used to determine the intensity of Denial of Service (DoS) attack. In order to detect self-similarity, we have used synthetic self-similar data generated using Fractional Gaussian Noise process and to identify existence of Denial of Service, DARPA IDS evaluation dataset is used. C code for statistical method is implemented on DSP Processor TMS320C6713 platform.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Normal legitimate network traffic on both LANs and wide area IP networks has self-similarity feature i.e. scale invariance property. Superimposition of legitimate traffic and high intensity non-self-similar traffic results into degradation in self-similarity of normal traffic. Rescaled range method is used to calculate Hurst parameter and its deviation from normal value. Two inputs and one output fuzzy logic block is used to determine the intensity of Denial of Service (DoS) attack. In order to detect self-similarity, we have used synthetic self-similar data generated using Fractional Gaussian Noise process and to identify existence of Denial of Service, DARPA IDS evaluation dataset is used. C code for statistical method is implemented on DSP Processor TMS320C6713 platform.
Hurst参数和模糊逻辑在拒绝服务攻击检测中的应用
局域网和广域网的正常合法网络流量都具有自相似特性,即规模不变性。合法流量与高强度非自相似流量的叠加导致正常流量的自相似度下降。采用重标差法计算赫斯特参数及其与正态值的偏差。采用二输入一输出模糊逻辑块来确定拒绝服务攻击的强度。为了检测自相似度,我们使用分数阶高斯噪声处理生成的合成自相似数据,并使用DARPA IDS评估数据集来识别拒绝服务的存在性。统计方法的C代码在DSP处理器TMS320C6713平台上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信