ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD MODELS

T. Tang
{"title":"ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD MODELS","authors":"T. Tang","doi":"10.1142/9789813272880_0196","DOIUrl":null,"url":null,"abstract":"In this article, we overview recent developments of modern computational methods for the approximate solution of phase-field problems. The main difficulty for developing a numerical method for phase field equations is a severe stability restriction on the time step due to nonlinearity and high order differential terms. It is known that the phase field models satisfy a nonlinear stability relationship called gradient stability, usually expressed as a time-decreasing free-energy functional. This property has been used recently to derive numerical schemes that inherit the gradient stability. The first part of the article will discuss implicit-explicit time discretizations which satisfy the energy stability. The second part is to discuss time-adaptive strategies for solving the phase-field problems, which is motivated by the observation that the energy functionals decay with time smoothly except at a few critical time levels. The classical operator-splitting method is a useful tool in time discrtization. In the final part, we will provide some preliminary results using operator-splitting approach.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article, we overview recent developments of modern computational methods for the approximate solution of phase-field problems. The main difficulty for developing a numerical method for phase field equations is a severe stability restriction on the time step due to nonlinearity and high order differential terms. It is known that the phase field models satisfy a nonlinear stability relationship called gradient stability, usually expressed as a time-decreasing free-energy functional. This property has been used recently to derive numerical schemes that inherit the gradient stability. The first part of the article will discuss implicit-explicit time discretizations which satisfy the energy stability. The second part is to discuss time-adaptive strategies for solving the phase-field problems, which is motivated by the observation that the energy functionals decay with time smoothly except at a few critical time levels. The classical operator-splitting method is a useful tool in time discrtization. In the final part, we will provide some preliminary results using operator-splitting approach.
相场模型的有效数值方法
本文综述了相场问题近似解的现代计算方法的最新进展。发展相场方程数值方法的主要困难是由于非线性和高阶微分项对时间步长的严重稳定性限制。众所周知,相场模型满足一种称为梯度稳定性的非线性稳定性关系,通常表示为随时间减少的自由能泛函。这一性质最近被用来推导继承梯度稳定性的数值格式。文章的第一部分将讨论满足能量稳定性的显式-隐式时间离散化。第二部分是讨论解决相场问题的时间自适应策略,其动机是观察到能量泛函随时间平滑衰减,除了在几个临界时间水平。经典的算子分裂方法是一种有效的时间离散方法。在最后一部分,我们将使用算子分裂方法提供一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信