Study of Execution Efficiency of Implementation Versions of Sparse Matrices Multiplication Algorithm on Parallel Dataflow Computing System “Buran”

N. Levchenko, A. Okunev, D. Zmejev
{"title":"Study of Execution Efficiency of Implementation Versions of Sparse Matrices Multiplication Algorithm on Parallel Dataflow Computing System “Buran”","authors":"N. Levchenko, A. Okunev, D. Zmejev","doi":"10.1109/EWDTS.2018.8524760","DOIUrl":null,"url":null,"abstract":"The article proposes to solve problems related to the parallel implementation of the sparse matrices multiplication task, using the architecture of the parallel dataflow computing system “Buran”, which implements the dataflow computing model. The article describes the implementation versions of the sparse matrices multiplication task algorithm in the dataflow programming paradigm. These algorithm implementations demonstrate the simplicity of their creation and universality. The experiments conducted using the behavioural cycle-accurate simulator have shown that the increase in the efficiency of tasks that use a sparse data structure can reach several orders of magnitude when executing them on the parallel data flow computing system.","PeriodicalId":127240,"journal":{"name":"2018 IEEE East-West Design & Test Symposium (EWDTS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE East-West Design & Test Symposium (EWDTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2018.8524760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article proposes to solve problems related to the parallel implementation of the sparse matrices multiplication task, using the architecture of the parallel dataflow computing system “Buran”, which implements the dataflow computing model. The article describes the implementation versions of the sparse matrices multiplication task algorithm in the dataflow programming paradigm. These algorithm implementations demonstrate the simplicity of their creation and universality. The experiments conducted using the behavioural cycle-accurate simulator have shown that the increase in the efficiency of tasks that use a sparse data structure can reach several orders of magnitude when executing them on the parallel data flow computing system.
并行数据流计算系统“Buran”上稀疏矩阵乘法算法实现版本的执行效率研究
本文提出利用并行数据流计算系统“Buran”的架构实现数据流计算模型,解决稀疏矩阵乘法任务并行实现的相关问题。本文描述了在数据流编程范例中稀疏矩阵乘法任务算法的实现版本。这些算法的实现证明了其创建的简单性和通用性。使用行为周期精确模拟器进行的实验表明,使用稀疏数据结构的任务在并行数据流计算系统上执行时,效率的提高可以达到几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信