Locally anomaly detection in crowded scenes using Locality constrained Linear Coding

Hajar Yousefi, Z. Azimifar, A. Nazemi
{"title":"Locally anomaly detection in crowded scenes using Locality constrained Linear Coding","authors":"Hajar Yousefi, Z. Azimifar, A. Nazemi","doi":"10.1109/AISP.2017.8324082","DOIUrl":null,"url":null,"abstract":"The investigation surrounding recent Stockholm and New York terrorist attack enforced this research to emphasize on anomaly detection. This paper describes the main part of an ongoing study through anomaly detection and localization which aims to improve anomaly localization accuracy. The sparsity constraint used in most recent anomaly detection researches is replaced with Locality-constrained Linear Coding. Locality-constrained Linear Coding (LLC) reconstruction cost criterion is designed to detect anomalies that occur in video locally. Implementing this method, the obtained experimental results approves considerable improvement regarding localization.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The investigation surrounding recent Stockholm and New York terrorist attack enforced this research to emphasize on anomaly detection. This paper describes the main part of an ongoing study through anomaly detection and localization which aims to improve anomaly localization accuracy. The sparsity constraint used in most recent anomaly detection researches is replaced with Locality-constrained Linear Coding. Locality-constrained Linear Coding (LLC) reconstruction cost criterion is designed to detect anomalies that occur in video locally. Implementing this method, the obtained experimental results approves considerable improvement regarding localization.
基于局域约束线性编码的拥挤场景局部异常检测
近期斯德哥尔摩和纽约恐怖袭击事件的调查使得本研究更加重视异常检测。本文介绍了一项正在进行的通过异常检测和定位来提高异常定位精度的研究的主要部分。在最近的异常检测研究中,稀疏性约束被位置约束线性编码所取代。设计了位置约束线性编码(LLC)重构代价准则,用于检测视频中局部出现的异常。实施该方法后,得到的实验结果在定位方面有了较大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信