A Novel Bayesian Filtering Method for Systems with Quantized Output Data

Ricardo Albornoz, R. Carvajal, J. C. Agüero
{"title":"A Novel Bayesian Filtering Method for Systems with Quantized Output Data","authors":"Ricardo Albornoz, R. Carvajal, J. C. Agüero","doi":"10.1109/CHILECON47746.2019.8987643","DOIUrl":null,"url":null,"abstract":"In this paper we develop a novel scheme for state estimation of discrete-time linear time-invariant systems with quantized output data. We take a Bayesian approach, therefore, we describe the behavior of the a posteriori probability density function of the state. The difficulty of this problem lies in the probability function of the measurable output given the state, which we approach through an approximation by a Gaussian sum, that naturally leads to a Gaussian sum for the a posteriori density function.","PeriodicalId":223855,"journal":{"name":"2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHILECON47746.2019.8987643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we develop a novel scheme for state estimation of discrete-time linear time-invariant systems with quantized output data. We take a Bayesian approach, therefore, we describe the behavior of the a posteriori probability density function of the state. The difficulty of this problem lies in the probability function of the measurable output given the state, which we approach through an approximation by a Gaussian sum, that naturally leads to a Gaussian sum for the a posteriori density function.
具有量化输出数据系统的一种新的贝叶斯滤波方法
本文提出了一种具有量化输出数据的离散线性定常系统状态估计的新方法。我们采用贝叶斯方法,因此,我们描述了状态的后验概率密度函数的行为。这个问题的困难在于给定状态的可测量输出的概率函数,我们通过高斯和近似来接近它,这自然会导致后验密度函数的高斯和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信