Approximative Policy Iteration for Exit Time Feedback Control Problems Driven by Stochastic Differential Equations using Tensor Train Format

K. Fackeldey, M. Oster, Leon Sallandt, R. Schneider
{"title":"Approximative Policy Iteration for Exit Time Feedback Control Problems Driven by Stochastic Differential Equations using Tensor Train Format","authors":"K. Fackeldey, M. Oster, Leon Sallandt, R. Schneider","doi":"10.1137/20m1372500","DOIUrl":null,"url":null,"abstract":"We consider a stochastic optimal exit time feedback control problem. The Bellman equation is solved approximatively via the Policy Iteration algorithm on a polynomial ansatz space by a sequence of linear equations. As high degree multi-polynomials are needed, the corresponding equations suffer from the curse of dimensionality even in moderate dimensions. We employ tensor-train methods to account for this problem. The approximation process within the Policy Iteration is done via a Least-Squares ansatz and the integration is done via Monte-Carlo methods. Numerical evidences are given for the (multi dimensional) double well potential and a three-hole potential.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1372500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider a stochastic optimal exit time feedback control problem. The Bellman equation is solved approximatively via the Policy Iteration algorithm on a polynomial ansatz space by a sequence of linear equations. As high degree multi-polynomials are needed, the corresponding equations suffer from the curse of dimensionality even in moderate dimensions. We employ tensor-train methods to account for this problem. The approximation process within the Policy Iteration is done via a Least-Squares ansatz and the integration is done via Monte-Carlo methods. Numerical evidences are given for the (multi dimensional) double well potential and a three-hole potential.
基于张量序列格式的随机微分方程驱动的出口时间反馈控制问题的逼近策略迭代
考虑一个随机最优退出时间反馈控制问题。利用策略迭代算法在多项式ansatz空间上用一系列线性方程近似求解Bellman方程。由于需要使用高次多多项式,因此即使在中等维数下,相应的方程也会受到维数诅咒的困扰。我们采用张量训练方法来解释这个问题。策略迭代中的近似过程通过最小二乘方差分析完成,积分通过蒙特卡罗方法完成。给出了(多维)双井电位和三孔电位的数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信