Heterogeneous Generative Dataset for UASes

Balakrishnan Dharmalingam, Ibrahim Odat, Rajdeep Mukherjee, Brett Piggott, Anyi Liu
{"title":"Heterogeneous Generative Dataset for UASes","authors":"Balakrishnan Dharmalingam, Ibrahim Odat, Rajdeep Mukherjee, Brett Piggott, Anyi Liu","doi":"10.1109/MOST57249.2023.00034","DOIUrl":null,"url":null,"abstract":"In this poster, we present the construction of HGDAVE (Heterogeneous Generative Dataset for Unmanned Autonomous Systems), a new dataset for Connected and Autonomous Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs), namely Unmanned Autonomous Systems (UASes). The dataset will be used to train artificial intelligence (AI) models to detect cybersecurity and safety-related risks, malfunctions, and crashes. The dataset was collected from three sources: 1) script-generated flying or driving missions, 2) software fuzzer-generated crashes instances, and 3) cybersecurity exploits generated by ethical hackers. To collect the data, we utilized the Digital Twin (DT) to replicate the behavior of UASes, which provides data that can be used to analyze, develop, and detect new anomaly detection algorithms.","PeriodicalId":338621,"journal":{"name":"2023 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOST57249.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this poster, we present the construction of HGDAVE (Heterogeneous Generative Dataset for Unmanned Autonomous Systems), a new dataset for Connected and Autonomous Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs), namely Unmanned Autonomous Systems (UASes). The dataset will be used to train artificial intelligence (AI) models to detect cybersecurity and safety-related risks, malfunctions, and crashes. The dataset was collected from three sources: 1) script-generated flying or driving missions, 2) software fuzzer-generated crashes instances, and 3) cybersecurity exploits generated by ethical hackers. To collect the data, we utilized the Digital Twin (DT) to replicate the behavior of UASes, which provides data that can be used to analyze, develop, and detect new anomaly detection algorithms.
异构生成数据集的用途
在这张海报中,我们展示了HGDAVE(异构生成数据集for Unmanned Autonomous Systems)的构建,这是一个新的数据集,用于连接和自主车辆(CAVs)和无人驾驶飞行器(uav),即无人自主系统(UASes)。该数据集将用于训练人工智能(AI)模型,以检测网络安全和安全相关的风险、故障和崩溃。数据集从三个来源收集:1)脚本生成的飞行或驾驶任务,2)软件模糊器生成的崩溃实例,以及3)道德黑客生成的网络安全漏洞。为了收集数据,我们利用数字孪生(DT)来复制用户的行为,这提供了可用于分析、开发和检测新的异常检测算法的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信