Building intrusion pattern miner for snort network intrusion detection system

Lih-Chyau Wuu, Chi-Hsiang Hung, Sout-Fong Chen
{"title":"Building intrusion pattern miner for snort network intrusion detection system","authors":"Lih-Chyau Wuu, Chi-Hsiang Hung, Sout-Fong Chen","doi":"10.1109/CCST.2003.1297607","DOIUrl":null,"url":null,"abstract":"We propose a framework for Snort network-based intrusion detection system to make it have the ability of not only catching new attack patterns automatically, but also detecting sequential attack behaviors. To do that, we first build an intrusion pattern discovery module to find single intrusion patterns and sequential intrusion patterns from a collection of attack packets in offline training phase. The module applies data mining technique to extract descriptive attack signatures from large stores of packets, and then it converts the signatures to Snort detection rules for online detection. In order to detect sequential intrusion behavior, the Snort detection engine is accompanied with our intrusion behavior detection engine. When a series of incoming packets match the signatures representing sequential intrusion scenarios, intrusion behavior detection engine make an alert.","PeriodicalId":344868,"journal":{"name":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2003.1297607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

We propose a framework for Snort network-based intrusion detection system to make it have the ability of not only catching new attack patterns automatically, but also detecting sequential attack behaviors. To do that, we first build an intrusion pattern discovery module to find single intrusion patterns and sequential intrusion patterns from a collection of attack packets in offline training phase. The module applies data mining technique to extract descriptive attack signatures from large stores of packets, and then it converts the signatures to Snort detection rules for online detection. In order to detect sequential intrusion behavior, the Snort detection engine is accompanied with our intrusion behavior detection engine. When a series of incoming packets match the signatures representing sequential intrusion scenarios, intrusion behavior detection engine make an alert.
构建snort网络入侵检测系统的入侵模式挖掘器
提出了一种基于Snort网络的入侵检测系统框架,使其不仅能够自动捕捉新的攻击模式,而且能够检测连续的攻击行为。为此,我们首先构建入侵模式发现模块,从离线训练阶段的攻击包集合中发现单个入侵模式和顺序入侵模式。该模块利用数据挖掘技术从大量信息包中提取描述性攻击签名,并将签名转换为Snort检测规则进行在线检测。为了检测顺序入侵行为,Snort检测引擎与我们的入侵行为检测引擎一起使用。当一系列进入的报文命中代表连续入侵场景的签名时,入侵行为检测引擎就会发出告警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信