Multivariate Classification of Complex and Multi-echo fMRI Data

S. Peltier, D. Noll, J. Lisinski, S. LaConte
{"title":"Multivariate Classification of Complex and Multi-echo fMRI Data","authors":"S. Peltier, D. Noll, J. Lisinski, S. LaConte","doi":"10.1109/PRNI.2013.65","DOIUrl":null,"url":null,"abstract":"Multivariate pattern classification and prediction offers an alternative to standard univariate analysis techniques, and has recently been applied in MR imaging using support vector machines (SVM), and used to attain real-time feedback. The standard approach has been to use reconstructed image magnitude data. However, information is also present in the image phase data, and in the k-space data itself. Further, multi-echo imaging offers possibilities of increased functional sensitivity and quantitative imaging. In this study, we explore applying SVM techniques to complex and multi-echo fMRI data, using both phase information and earlier echo-times for prediction.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multivariate pattern classification and prediction offers an alternative to standard univariate analysis techniques, and has recently been applied in MR imaging using support vector machines (SVM), and used to attain real-time feedback. The standard approach has been to use reconstructed image magnitude data. However, information is also present in the image phase data, and in the k-space data itself. Further, multi-echo imaging offers possibilities of increased functional sensitivity and quantitative imaging. In this study, we explore applying SVM techniques to complex and multi-echo fMRI data, using both phase information and earlier echo-times for prediction.
复杂和多回波fMRI数据的多元分类
多元模式分类和预测提供了标准单变量分析技术的替代方案,最近已应用于使用支持向量机(SVM)的磁共振成像,并用于获得实时反馈。标准的方法是使用重建图像的震级数据。然而,信息也存在于图像相位数据和k空间数据本身中。此外,多回声成像提供了增加功能灵敏度和定量成像的可能性。在本研究中,我们探索将支持向量机技术应用于复杂和多回波fMRI数据,使用相位信息和早期回波时间进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信