Wideband array signal processing using MCMC methods

W. Ng, J. Reilly, T. Kirubarajan, Jean-René Larocque
{"title":"Wideband array signal processing using MCMC methods","authors":"W. Ng, J. Reilly, T. Kirubarajan, Jean-René Larocque","doi":"10.1109/ICASSP.2003.1199900","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel wideband structure for array signal processing. The method lends itself well to a Bayesian approach for jointly estimating the model order (number of sources) and the DOA through a reversible jump Markov chain Monte Carlo (MCMC) procedure. The source amplitudes are estimated through a maximum a posteriori (MAP) procedure. Advantages of the proposed method include joint detection of model order and estimation of the DOA parameters, and the fact that meaningful results can be obtained using fewer observations than previous methods. The DOA estimation performance of the proposed method is compared with the theoretical Cramer-Rao lower bound (CRLB) for this problem. Simulation results demonstrate the effectiveness and robustness of the method.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1199900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper proposes a novel wideband structure for array signal processing. The method lends itself well to a Bayesian approach for jointly estimating the model order (number of sources) and the DOA through a reversible jump Markov chain Monte Carlo (MCMC) procedure. The source amplitudes are estimated through a maximum a posteriori (MAP) procedure. Advantages of the proposed method include joint detection of model order and estimation of the DOA parameters, and the fact that meaningful results can be obtained using fewer observations than previous methods. The DOA estimation performance of the proposed method is compared with the theoretical Cramer-Rao lower bound (CRLB) for this problem. Simulation results demonstrate the effectiveness and robustness of the method.
宽带阵列信号处理的MCMC方法
本文提出了一种用于阵列信号处理的新型宽带结构。该方法适用于贝叶斯方法,通过可逆跳跃马尔可夫链蒙特卡罗(MCMC)过程来联合估计模型阶数(源数)和DOA。源振幅通过最大后验(MAP)程序估计。该方法的优点包括模型阶数的联合检测和DOA参数的联合估计,并且与以前的方法相比,使用较少的观测值可以获得有意义的结果。将该方法的DOA估计性能与理论的Cramer-Rao下界(CRLB)进行了比较。仿真结果验证了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信