Machine Learning for Model Predictive Control of Cascaded H-Bridge Inverters

Francesco Simonetti, G. D. Di Girolamo, A. D’innocenzo, Carlo Cecati
{"title":"Machine Learning for Model Predictive Control of Cascaded H-Bridge Inverters","authors":"Francesco Simonetti, G. D. Di Girolamo, A. D’innocenzo, Carlo Cecati","doi":"10.1109/MELECON53508.2022.9842941","DOIUrl":null,"url":null,"abstract":"Finite Control Set Model Predictive Control (MPC) is an effective control technique for Cascaded H-Bridge converters. However, its computational complexity becomes impractical when the number of levels of the converter increases. Machine Learning techniques can be successfully used to reduce the computational burden of the optimal control computation and this paper provides a comparison among conventional MPC and well-known Machine Learning techniques: Support Vector Machines, Regression Trees, Neural Networks and Linear Regression. A simulation study is presented for a Cascaded H-Bridge Static Synchronous Compensator varying the number of levels and using different Machine Learning control strategies. The results underline that some ML techniques can substantially reduce computational complexity while keeping the performance comparable with the optimal control.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9842941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finite Control Set Model Predictive Control (MPC) is an effective control technique for Cascaded H-Bridge converters. However, its computational complexity becomes impractical when the number of levels of the converter increases. Machine Learning techniques can be successfully used to reduce the computational burden of the optimal control computation and this paper provides a comparison among conventional MPC and well-known Machine Learning techniques: Support Vector Machines, Regression Trees, Neural Networks and Linear Regression. A simulation study is presented for a Cascaded H-Bridge Static Synchronous Compensator varying the number of levels and using different Machine Learning control strategies. The results underline that some ML techniques can substantially reduce computational complexity while keeping the performance comparable with the optimal control.
级联h桥逆变器模型预测控制的机器学习
有限控制集预测控制(MPC)是一种有效的串级h桥变换器控制技术。然而,当转换器的电平数增加时,其计算复杂度变得不切实际。机器学习技术可以成功地用于减少最优控制计算的计算负担,本文提供了传统的MPC和著名的机器学习技术:支持向量机,回归树,神经网络和线性回归的比较。本文对级联h桥静态同步补偿器进行了仿真研究,研究了级联h桥静态同步补偿器的电平数变化和不同的机器学习控制策略。结果表明,一些机器学习技术可以大大降低计算复杂度,同时保持与最优控制相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信