V. Khryashchev, V. Pavlov, A. Priorov, A. Ostrovskaya
{"title":"Deep Learning for Region Detection in High-Resolution Aerial Images","authors":"V. Khryashchev, V. Pavlov, A. Priorov, A. Ostrovskaya","doi":"10.1109/EWDTS.2018.8524672","DOIUrl":null,"url":null,"abstract":"The goal of given investigation is to develop deep learning and convolutional neural network methods for automatically extracting the locations of objects such as water resource, forest and urban areas from given aerial images. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. For deep learning on supercomputer NVIDIA DGX-1 we used the marked image database UrbanAtlas, which contains images of 21 classes. Images obtained from the Landsat-8 satellites are used for estimation of automatic object detection quality. Object detection on aerial images has found application at urban planning, forest management, climate modelling, etc.","PeriodicalId":127240,"journal":{"name":"2018 IEEE East-West Design & Test Symposium (EWDTS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE East-West Design & Test Symposium (EWDTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2018.8524672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The goal of given investigation is to develop deep learning and convolutional neural network methods for automatically extracting the locations of objects such as water resource, forest and urban areas from given aerial images. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. For deep learning on supercomputer NVIDIA DGX-1 we used the marked image database UrbanAtlas, which contains images of 21 classes. Images obtained from the Landsat-8 satellites are used for estimation of automatic object detection quality. Object detection on aerial images has found application at urban planning, forest management, climate modelling, etc.