Deep Learning for Region Detection in High-Resolution Aerial Images

V. Khryashchev, V. Pavlov, A. Priorov, A. Ostrovskaya
{"title":"Deep Learning for Region Detection in High-Resolution Aerial Images","authors":"V. Khryashchev, V. Pavlov, A. Priorov, A. Ostrovskaya","doi":"10.1109/EWDTS.2018.8524672","DOIUrl":null,"url":null,"abstract":"The goal of given investigation is to develop deep learning and convolutional neural network methods for automatically extracting the locations of objects such as water resource, forest and urban areas from given aerial images. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. For deep learning on supercomputer NVIDIA DGX-1 we used the marked image database UrbanAtlas, which contains images of 21 classes. Images obtained from the Landsat-8 satellites are used for estimation of automatic object detection quality. Object detection on aerial images has found application at urban planning, forest management, climate modelling, etc.","PeriodicalId":127240,"journal":{"name":"2018 IEEE East-West Design & Test Symposium (EWDTS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE East-West Design & Test Symposium (EWDTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2018.8524672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The goal of given investigation is to develop deep learning and convolutional neural network methods for automatically extracting the locations of objects such as water resource, forest and urban areas from given aerial images. We show how deep neural networks implemented on modern GPUs can be used to efficiently learn highly discriminative image features. For deep learning on supercomputer NVIDIA DGX-1 we used the marked image database UrbanAtlas, which contains images of 21 classes. Images obtained from the Landsat-8 satellites are used for estimation of automatic object detection quality. Object detection on aerial images has found application at urban planning, forest management, climate modelling, etc.
高分辨率航拍图像区域检测的深度学习
该研究的目标是开发深度学习和卷积神经网络方法,用于从给定的航空图像中自动提取诸如水资源,森林和城市地区等物体的位置。我们展示了在现代gpu上实现的深度神经网络如何有效地学习高度判别的图像特征。为了在超级计算机NVIDIA DGX-1上进行深度学习,我们使用了标记图像数据库UrbanAtlas,其中包含21个类的图像。从Landsat-8卫星获得的图像用于自动目标检测质量的估计。航空图像的目标检测在城市规划、森林管理、气候建模等方面都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信