Application of neural network and principal component analysis to GPR data

M. F. Pantoja, Jesus B. Rodriguez, A. Bretones, C. M. de Jong, S. Garcia, R. Martín, D. Vieira
{"title":"Application of neural network and principal component analysis to GPR data","authors":"M. F. Pantoja, Jesus B. Rodriguez, A. Bretones, C. M. de Jong, S. Garcia, R. Martín, D. Vieira","doi":"10.1109/IWAGPR.2011.5963854","DOIUrl":null,"url":null,"abstract":"This communication presents a prediction algorithm for the detection of features in GPR-based surveys. Based on signal processing and soft-computing techniques, the coupled use of principal-component analysis and neural networks enables a definition of an efficient method for analyzing GPR electromagnetic data. Results for detecting features of geological layers demonstrate not only the accuracy of the predictions of the method but also the simple interpretation of its output through reconstructed images of the scenarios.","PeriodicalId":130006,"journal":{"name":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2011.5963854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This communication presents a prediction algorithm for the detection of features in GPR-based surveys. Based on signal processing and soft-computing techniques, the coupled use of principal-component analysis and neural networks enables a definition of an efficient method for analyzing GPR electromagnetic data. Results for detecting features of geological layers demonstrate not only the accuracy of the predictions of the method but also the simple interpretation of its output through reconstructed images of the scenarios.
神经网络与主成分分析在探地雷达数据中的应用
本文提出了一种基于gpr的调查特征检测的预测算法。基于信号处理和软计算技术,将主成分分析和神经网络相结合,定义了一种有效的探地雷达电磁数据分析方法。探测地质层特征的结果不仅证明了该方法预测的准确性,而且通过场景的重建图像对其输出进行了简单的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信