Modeling of a greenhouse using Particle Swarm Optimization

E. Cruz-Valeriano, O. Begovich, J. Ruiz-León
{"title":"Modeling of a greenhouse using Particle Swarm Optimization","authors":"E. Cruz-Valeriano, O. Begovich, J. Ruiz-León","doi":"10.1109/ICEEE.2013.6676034","DOIUrl":null,"url":null,"abstract":"The Particle Swarm Optimization (PSO) algorithm is applied in this work to identify some parameters of a greenhouse model whose values are difficult to obtain. The model is described as functions of the outside climate and actuators actions without control. The parameters of the model are obtained applying PSO to minimize a proposed error function. The obtained model is validated using real data from a greenhouse prototype. Validation shows a good agreement with the dynamic behavior of the inside air temperature and relative humidity, which are the main variables of interest.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Particle Swarm Optimization (PSO) algorithm is applied in this work to identify some parameters of a greenhouse model whose values are difficult to obtain. The model is described as functions of the outside climate and actuators actions without control. The parameters of the model are obtained applying PSO to minimize a proposed error function. The obtained model is validated using real data from a greenhouse prototype. Validation shows a good agreement with the dynamic behavior of the inside air temperature and relative humidity, which are the main variables of interest.
利用粒子群优化技术对温室进行建模
本文采用粒子群优化(PSO)算法对温室模型中一些难以获得的参数进行辨识。该模型被描述为外部气候和执行器无控制作用的函数。利用粒子群算法最小化所提出的误差函数,得到模型的参数。利用温室样机的实际数据对模型进行了验证。验证结果表明,该模型与室内空气温度和相对湿度的动态特性吻合良好,这两个变量是我们感兴趣的主要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信