Co-evolutionary learning in the n-choice iterated prisoner's dilemma with PSO algorithm in a spatial environment

Xiaoyang Wang, Huiyou Chang, Yang Yi, Yibin Lin
{"title":"Co-evolutionary learning in the n-choice iterated prisoner's dilemma with PSO algorithm in a spatial environment","authors":"Xiaoyang Wang, Huiyou Chang, Yang Yi, Yibin Lin","doi":"10.1109/CIDUE.2013.6595771","DOIUrl":null,"url":null,"abstract":"The evolution of strategies in n-choice iterated prisoner's dilemma game is studied on spatial environment. This paper presents and investigates the application of co-evolutionary training techniques based on particle swarm optimization (PSO) to evolve cooperation, and exploring different parameter configurations via numerical simulations. Key model parameters include the size of the population, the interaction topology, the number of choices and the cost-to-benefit ratio. The simulation results reveal that the spatial structure does promote higher levels of cooperative behaviors, the cost-to-benefit ratio and the multiple choices are important factors in determining the strategy evolution.","PeriodicalId":133590,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDUE.2013.6595771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The evolution of strategies in n-choice iterated prisoner's dilemma game is studied on spatial environment. This paper presents and investigates the application of co-evolutionary training techniques based on particle swarm optimization (PSO) to evolve cooperation, and exploring different parameter configurations via numerical simulations. Key model parameters include the size of the population, the interaction topology, the number of choices and the cost-to-benefit ratio. The simulation results reveal that the spatial structure does promote higher levels of cooperative behaviors, the cost-to-benefit ratio and the multiple choices are important factors in determining the strategy evolution.
空间环境下基于粒子群算法的n选择迭代囚徒困境协同进化学习
研究了n选项迭代囚徒困境博弈在空间环境下的策略演化。本文提出并研究了基于粒子群优化(PSO)的协同进化训练技术在协同进化中的应用,并通过数值模拟探索了不同的参数配置。关键模型参数包括人口规模、交互拓扑、选择数量和成本效益比。仿真结果表明,空间结构确实促进了更高层次的合作行为,成本效益比和多重选择是决定策略演化的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信