Processing next generation sequencing data in map-reduce framework using hadoop-BAM in a computer cluster

Rifki Sadikin, Andria Arisal, Rofithah Omar, N. Mazni
{"title":"Processing next generation sequencing data in map-reduce framework using hadoop-BAM in a computer cluster","authors":"Rifki Sadikin, Andria Arisal, Rofithah Omar, N. Mazni","doi":"10.1109/ICITISEE.2017.8285542","DOIUrl":null,"url":null,"abstract":"Next-Generation Sequencing in bioinformatics produce a massive amount of data volume. Big data technologies are needed to reduce computation time in data processing. In this paper, we implement Hadoop Map-Reduce framework for processing Next-Generation Sequencing using Hadoop-BAM library. Our implementation process a Binary Alignment Map (BAM) file which contains a reference sequence and many aligned/not-aligned reads by spitting the BAM file into Hadoop data blocks. To process the BAM file in a computer cluster, we implement a mapper and a reducer of Hadoop Map-Reduce framework. The mapper processes the BAM file to produce key value pairs. While, the reducer summary the key value pairs into a meaningful output. Here the mapper and reducer are created to summarize the number of bases in a BAM file. We conduct the experiment in a LIPI Hadoop cluster. The cluster consists of 96 CPU cores. The result of our experiments show that our map-reduce implementations are gaining speed-up compare to serial Next-Generation Sequencing with Picard tools.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Next-Generation Sequencing in bioinformatics produce a massive amount of data volume. Big data technologies are needed to reduce computation time in data processing. In this paper, we implement Hadoop Map-Reduce framework for processing Next-Generation Sequencing using Hadoop-BAM library. Our implementation process a Binary Alignment Map (BAM) file which contains a reference sequence and many aligned/not-aligned reads by spitting the BAM file into Hadoop data blocks. To process the BAM file in a computer cluster, we implement a mapper and a reducer of Hadoop Map-Reduce framework. The mapper processes the BAM file to produce key value pairs. While, the reducer summary the key value pairs into a meaningful output. Here the mapper and reducer are created to summarize the number of bases in a BAM file. We conduct the experiment in a LIPI Hadoop cluster. The cluster consists of 96 CPU cores. The result of our experiments show that our map-reduce implementations are gaining speed-up compare to serial Next-Generation Sequencing with Picard tools.
在计算机集群中使用hadoop-BAM在map-reduce框架中处理下一代测序数据
生物信息学中的下一代测序产生了大量的数据量。需要大数据技术来减少数据处理的计算时间。在本文中,我们使用Hadoop- bam库实现了Hadoop Map-Reduce框架来处理下一代测序。我们的实现过程是一个二进制对齐映射(BAM)文件,它包含一个引用序列和许多对齐/不对齐的读取,方法是将BAM文件放入Hadoop数据块中。为了在计算机集群中处理BAM文件,我们实现了Hadoop Map-Reduce框架的mapper和reducer。映射器处理BAM文件以生成键值对。同时,reducer将键值对汇总为有意义的输出。这里创建了映射器和减速器来汇总BAM文件中的碱基数量。我们在一个LIPI Hadoop集群中进行实验。集群共96个CPU核。我们的实验结果表明,与使用Picard工具的串行下一代测序相比,我们的map-reduce实现获得了更快的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信