Belief Function Theory Based Biometric Match Score Fusion: Case Studies in Multi-instance and Multi-unit Iris Verification

Mayank Vatsa, Richa Singh, A. Noore, S. Singh
{"title":"Belief Function Theory Based Biometric Match Score Fusion: Case Studies in Multi-instance and Multi-unit Iris Verification","authors":"Mayank Vatsa, Richa Singh, A. Noore, S. Singh","doi":"10.1109/ICAPR.2009.98","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for multi-biometric match score fusion when non-ideal conditions cause conflict in the results of different classifiers. The proposed framework uses belief function theory to effectively fuse the match scores and density estimation technique to compute the belief assignments. Fusion is performed using belief models such as Transferable Belief Model (TBM) and Proportional Conflict Redistribution (PCR) Rule followed by the likelihood ratio based decision making. Experimental results on multi-instance and multi-unit iris verification show that the proposed fusion framework with PCR rule yields the best verification accuracy even when individual biometric classifiers provide highly conflicting match scores.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a framework for multi-biometric match score fusion when non-ideal conditions cause conflict in the results of different classifiers. The proposed framework uses belief function theory to effectively fuse the match scores and density estimation technique to compute the belief assignments. Fusion is performed using belief models such as Transferable Belief Model (TBM) and Proportional Conflict Redistribution (PCR) Rule followed by the likelihood ratio based decision making. Experimental results on multi-instance and multi-unit iris verification show that the proposed fusion framework with PCR rule yields the best verification accuracy even when individual biometric classifiers provide highly conflicting match scores.
基于信念函数理论的生物特征匹配分数融合:多实例和多单元虹膜验证案例研究
针对非理想条件下不同分类器的匹配结果存在冲突的情况,提出了一种多生物特征匹配分数融合框架。该框架利用信念函数理论有效地融合匹配分数和密度估计技术计算信念赋值。采用可转移信念模型(TBM)和比例冲突再分配规则(PCR)等信念模型进行融合,然后进行基于似然比的决策。多实例和多单元虹膜验证实验结果表明,当单个生物特征分类器提供高度冲突的匹配分数时,所提出的融合框架具有最佳的验证精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信