THE DISTANCE RELATED SPECTRA OF SOME SUBDIVISION RELATED GRAPHS

Indulal Gopalapillai, Deena C. Scaria
{"title":"THE DISTANCE RELATED SPECTRA OF SOME SUBDIVISION RELATED GRAPHS","authors":"Indulal Gopalapillai, Deena C. Scaria","doi":"10.37418/jcsam.3.1.4","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph with a distance matrix $D$. The distance eigenvalues of $G$ are the eigenvalues of $D$, and the distance energy $E_D(G)$ is the sum of its absolute values. The transmission $Tr(v)$ of a vertex $v$ is the sum of the distances from $v$ to all other vertices in $G$. The transmission matrix $Tr(G)$ of $G$ is a diagonal matrix with diagonal entries equal to the transmissions of vertices. The matrices $D^L(G)= Tr(G)-D(G)$ and $D^Q(G)=Tr(G)+D(G)$ are, respectively, the Distance Laplacian and the Distance Signless Laplacian matrices of $G$. The eigenvalues of $D^L(G)$ ( $D^Q(G)$) constitute the Distance Laplacian spectrum ( Distance Signless Laplacian spectrum ). The subdivision graph $S(G)$ of $G$ is obtained by inserting a new vertex into every edge of $G$. We describe here the Distance Spectrum, Distance Laplacian spectrum and Distance Signless Laplacian spectrum of some types of subdivision related graphs of a regular graph in the terms of its adjacency spectrum. We also derive analytic expressions for the distance energy of $\\bar{S}(C_p)$, partial complement of the subdivision of a cycle $C_p$ and that of $\\overline {S\\left( {C_p }\\right)}$, complement of the even cycle $C_{2p}$.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.3.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a connected graph with a distance matrix $D$. The distance eigenvalues of $G$ are the eigenvalues of $D$, and the distance energy $E_D(G)$ is the sum of its absolute values. The transmission $Tr(v)$ of a vertex $v$ is the sum of the distances from $v$ to all other vertices in $G$. The transmission matrix $Tr(G)$ of $G$ is a diagonal matrix with diagonal entries equal to the transmissions of vertices. The matrices $D^L(G)= Tr(G)-D(G)$ and $D^Q(G)=Tr(G)+D(G)$ are, respectively, the Distance Laplacian and the Distance Signless Laplacian matrices of $G$. The eigenvalues of $D^L(G)$ ( $D^Q(G)$) constitute the Distance Laplacian spectrum ( Distance Signless Laplacian spectrum ). The subdivision graph $S(G)$ of $G$ is obtained by inserting a new vertex into every edge of $G$. We describe here the Distance Spectrum, Distance Laplacian spectrum and Distance Signless Laplacian spectrum of some types of subdivision related graphs of a regular graph in the terms of its adjacency spectrum. We also derive analytic expressions for the distance energy of $\bar{S}(C_p)$, partial complement of the subdivision of a cycle $C_p$ and that of $\overline {S\left( {C_p }\right)}$, complement of the even cycle $C_{2p}$.
一些细分相关图的距离相关谱
设$G$为连通图,其距离矩阵为$D$。$G$的距离特征值是$D$的特征值,而距离能量$E_D(G)$是它的绝对值之和。顶点$v$的传输$Tr(v)$是$v$到$G$中所有其他顶点的距离之和。$G$的传输矩阵$Tr(G)$是一个对角矩阵,其对角项等于顶点的传输。矩阵$D^L(G)= Tr(G)-D(G)$和$D^Q(G)=Tr(G)+D(G)$分别是$G$的距离拉普拉斯矩阵和距离无符号拉普拉斯矩阵。$D^L(G)$ ($D^Q(G)$)的特征值构成距离拉普拉斯谱(Distance Signless Laplacian spectrum)。通过在$G$的每条边插入一个新的顶点,得到$G$的细分图$S(G)$。本文根据正则图的邻接谱描述了正则图的若干类型的细分相关图的距离谱、距离拉普拉斯谱和距离无符号拉普拉斯谱。我们还推导出了循环细分的部分补$C_p$的距离能量$\bar{S}(C_p)$和偶循环的补$C_{2p}$的距离能量$\overline {S\left( {C_p }\right)}$的解析表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信