Convolutional neural networks based scale-adaptive kernelized correlation filter for robust visual object tracking

B. Liu, Zhengyu Zhu, Yong Yang
{"title":"Convolutional neural networks based scale-adaptive kernelized correlation filter for robust visual object tracking","authors":"B. Liu, Zhengyu Zhu, Yong Yang","doi":"10.1109/SPAC.2017.8304316","DOIUrl":null,"url":null,"abstract":"Visual object tracking is challenging when the object appearances occur significant changes, such as scale change, background clutter, occlusion, and so on. In this paper, we crop different sizes of multiscale templates around object and input these multiscale templates into network to pretrain the network adaptive the size change of tracking object. Different from previous the tracking method based on deep convolutional neural network (CNN), we exploit deep Residual Network (ResNet) to offline train a multiscale object appearance model on the ImageNet, and then the features from pretrained network are transferred into tracking tasks. Meanwhile, the proposed method combines the multilayer convolutional features, it is robust to disturbance, scale change, and occlusion. In addition, we fuse multiscale search strategy into three kernelized correlation filter, which strengthens the ability of adaptive scale change of object. Unlike the previous methods, we directly learn object appearance change by integrating multiscale templates into the ResNet. We compared our method with other CNN-based or correlation filter tracking methods, the experimental results show that our tracking method is superior to the existing state-of-the-art tracking method on Object Tracking Benchmark (OTB-2015) and Visual Object Tracking Benchmark (VOT-2015).","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual object tracking is challenging when the object appearances occur significant changes, such as scale change, background clutter, occlusion, and so on. In this paper, we crop different sizes of multiscale templates around object and input these multiscale templates into network to pretrain the network adaptive the size change of tracking object. Different from previous the tracking method based on deep convolutional neural network (CNN), we exploit deep Residual Network (ResNet) to offline train a multiscale object appearance model on the ImageNet, and then the features from pretrained network are transferred into tracking tasks. Meanwhile, the proposed method combines the multilayer convolutional features, it is robust to disturbance, scale change, and occlusion. In addition, we fuse multiscale search strategy into three kernelized correlation filter, which strengthens the ability of adaptive scale change of object. Unlike the previous methods, we directly learn object appearance change by integrating multiscale templates into the ResNet. We compared our method with other CNN-based or correlation filter tracking methods, the experimental results show that our tracking method is superior to the existing state-of-the-art tracking method on Object Tracking Benchmark (OTB-2015) and Visual Object Tracking Benchmark (VOT-2015).
基于卷积神经网络的尺度自适应核相关滤波鲁棒视觉目标跟踪
当物体外观发生重大变化时,如尺度变化、背景杂乱、遮挡等,视觉对象跟踪具有挑战性。在本文中,我们在目标周围裁剪不同大小的多尺度模板,并将这些多尺度模板输入到网络中,对网络进行自适应跟踪目标大小变化的预训练。与以往基于深度卷积神经网络(CNN)的跟踪方法不同,我们利用深度残差网络(ResNet)在ImageNet上离线训练多尺度目标外观模型,然后将预训练网络的特征转移到跟踪任务中。同时,该方法结合多层卷积特征,对干扰、尺度变化和遮挡具有较强的鲁棒性。此外,我们将多尺度搜索策略融合到三核相关滤波器中,增强了对目标尺度变化的自适应能力。与以前的方法不同,我们通过将多尺度模板集成到ResNet中,直接学习对象的外观变化。将本文方法与其他基于cnn或相关滤波的跟踪方法进行了比较,实验结果表明,本文方法在目标跟踪基准(OTB-2015)和视觉目标跟踪基准(VOT-2015)上优于现有的最先进的跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信