Computer simulation of the fracture of carbon nanotubes in a hydrogen environment

L. Zhou, S. Shi
{"title":"Computer simulation of the fracture of carbon nanotubes in a hydrogen environment","authors":"L. Zhou, S. Shi","doi":"10.1080/01418610208240433","DOIUrl":null,"url":null,"abstract":"Abstract Molecular dynamics simulations have been performed to study the mechanical properties of armchair-type single-walled and multiple-walled carbon nanotubes under tensile loading with and without hydrogen storage. Advanced bond order potentials were used in the simulations. Hydrogen molecules stored inside or outside nanotubes reduced the fracture strength of nanotubes. During the deformation, some C‒C bonds were broken and reconstructed. If hydrogen molecules were around, hydrogen atoms would compete with the carbon atoms, to form the H‒C bonds, which reduces the mechanical strength of nanotubes. Such detrimental effect of hydrogen is enhanced if the curvature of the tubes is increased, or if hydrogen is stored in a multiple-walled carbon nanotube.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208240433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Molecular dynamics simulations have been performed to study the mechanical properties of armchair-type single-walled and multiple-walled carbon nanotubes under tensile loading with and without hydrogen storage. Advanced bond order potentials were used in the simulations. Hydrogen molecules stored inside or outside nanotubes reduced the fracture strength of nanotubes. During the deformation, some C‒C bonds were broken and reconstructed. If hydrogen molecules were around, hydrogen atoms would compete with the carbon atoms, to form the H‒C bonds, which reduces the mechanical strength of nanotubes. Such detrimental effect of hydrogen is enhanced if the curvature of the tubes is increased, or if hydrogen is stored in a multiple-walled carbon nanotube.
碳纳米管在氢环境中断裂的计算机模拟
通过分子动力学模拟研究了扶手椅型单壁和多壁碳纳米管在拉伸载荷下的力学性能。模拟中采用了先进的键序势。氢分子的存在降低了纳米管的断裂强度。在变形过程中,部分碳碳键断裂并重建。如果周围有氢分子,氢原子就会与碳原子竞争,形成碳氢键,从而降低纳米管的机械强度。如果增加碳纳米管的曲率,或者将氢储存在多壁碳纳米管中,则会增强氢的这种有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信