Parameter estimation of a lead-acid battery model using genetic algorithm

D. Freitas, Hugerles S. Silva, E. C. Neto, A. M. N. Lima
{"title":"Parameter estimation of a lead-acid battery model using genetic algorithm","authors":"D. Freitas, Hugerles S. Silva, E. C. Neto, A. M. N. Lima","doi":"10.21439/JME.V2I1.23","DOIUrl":null,"url":null,"abstract":"Lead-Acid batteries models classifications are shown. The battery model used and its charging and discharging equations are shown. These equations are expanded to find the value of the time constant of this model, which is fixed at a given value. A genetic algorithm is applied to these expanded equations to estimate the value of the time constant. Some battery charging and discharging cycles are used for estimation and validation of the proposed system. A time constant other than the previously set value is found. A simulation study is used to demonstrate the feasibility of the proposed parameter determination method.","PeriodicalId":303991,"journal":{"name":"Journal of Mechatronics Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21439/JME.V2I1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-Acid batteries models classifications are shown. The battery model used and its charging and discharging equations are shown. These equations are expanded to find the value of the time constant of this model, which is fixed at a given value. A genetic algorithm is applied to these expanded equations to estimate the value of the time constant. Some battery charging and discharging cycles are used for estimation and validation of the proposed system. A time constant other than the previously set value is found. A simulation study is used to demonstrate the feasibility of the proposed parameter determination method.
基于遗传算法的铅酸蓄电池模型参数估计
铅酸蓄电池型号分类显示。给出了所采用的电池模型及其充放电方程。将这些方程展开,求出该模型的时间常数的值,该时间常数固定在给定值。利用遗传算法对这些展开方程进行时间常数的估计。一些电池充放电循环被用来估计和验证所提出的系统。找到与先前设置的值不同的时间常数。仿真研究证明了所提出的参数确定方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信