Transfer Learning for Small-Scale Fish Image Classification

Chenchen Qiu, J. Cui, Shaoyong Zhang, Chao Wang, Zhaorui Gu, Haiyong Zheng, Bing Zheng
{"title":"Transfer Learning for Small-Scale Fish Image Classification","authors":"Chenchen Qiu, J. Cui, Shaoyong Zhang, Chao Wang, Zhaorui Gu, Haiyong Zheng, Bing Zheng","doi":"10.1109/OCEANSKOBE.2018.8559473","DOIUrl":null,"url":null,"abstract":"Fish image classification on small-scale datasets is a classical fine-grained classification problem with more challenging than common classification problems since popular Convolutional Neural Networks (CNNs) always need massive labeled images to achieve best effects. This paper presents a method for fine-grained fish image classification on small-scale dataset by improving transfer learning with Bilinear Convolutional Neural Networks (B-CNNs). Contrast to the popular CNNs for image classification such as VGG net or ResNet, our method is capable of classifying images with insufficient training data. We evaluate the performance of our method and state-of-the-art CNNs on a small-scale fine-grained dataset (Croatian fish dataset) with only about 10 samples per category. The experimental results show that our transfer learning method can greatly enhance the accuracy on four popular CNNs. In particular, the method on Inception-v4 with 78.25","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fish image classification on small-scale datasets is a classical fine-grained classification problem with more challenging than common classification problems since popular Convolutional Neural Networks (CNNs) always need massive labeled images to achieve best effects. This paper presents a method for fine-grained fish image classification on small-scale dataset by improving transfer learning with Bilinear Convolutional Neural Networks (B-CNNs). Contrast to the popular CNNs for image classification such as VGG net or ResNet, our method is capable of classifying images with insufficient training data. We evaluate the performance of our method and state-of-the-art CNNs on a small-scale fine-grained dataset (Croatian fish dataset) with only about 10 samples per category. The experimental results show that our transfer learning method can greatly enhance the accuracy on four popular CNNs. In particular, the method on Inception-v4 with 78.25
小尺度鱼类图像分类的迁移学习
小规模数据集上的鱼类图像分类是一个经典的细粒度分类问题,它比普通分类问题更具挑战性,因为流行的卷积神经网络(cnn)总是需要大量标记图像才能达到最佳效果。提出了一种基于双线性卷积神经网络(b - cnn)改进迁移学习的小尺度鱼图像分类方法。与VGG net或ResNet等流行的cnn图像分类方法相比,我们的方法能够对训练数据不足的图像进行分类。我们在一个小规模的细粒度数据集(克罗地亚鱼数据集)上评估了我们的方法和最先进的cnn的性能,每个类别只有大约10个样本。实验结果表明,我们的迁移学习方法可以大大提高四种流行cnn的准确率。特别是,使用78.25的Inception-v4上的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信