{"title":"Deep Learning for The Detection of COVID-19 Using Transfer Learning and Model Integration","authors":"Ningwei Wang, Hongzhe Liu, Cheng Xu","doi":"10.1109/ICEIEC49280.2020.9152329","DOIUrl":null,"url":null,"abstract":"We researched the diagnostic capabilities of deep learning on chest radiographs and an image classifier based on the COVID-Net was presented to classify chest X-Ray images. In the case of a small amount of COVID-19 data, data enhancement was proposed to expanded COVID-19 data 17 times. Our model aims at transfer learning, model integration and classify chest X-Ray images according to three labels: normal, COVID-19 and viral pneumonia. According to the accuracy and loss value, choose the models ResNet-101 and ResNet-152 with good effect for fusion, and dynamically improve their weight ratio during the training process. After training, the model can achieve 96.1% of the types of chest X-Ray images accuracy on the test set. This technology has higher sensitivity than radiologists in the screening and diagnosis of lung nodules. As an auxiliary diagnostic technology, it can help radiologists improve work efficiency and diagnostic accuracy.","PeriodicalId":352285,"journal":{"name":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC49280.2020.9152329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
We researched the diagnostic capabilities of deep learning on chest radiographs and an image classifier based on the COVID-Net was presented to classify chest X-Ray images. In the case of a small amount of COVID-19 data, data enhancement was proposed to expanded COVID-19 data 17 times. Our model aims at transfer learning, model integration and classify chest X-Ray images according to three labels: normal, COVID-19 and viral pneumonia. According to the accuracy and loss value, choose the models ResNet-101 and ResNet-152 with good effect for fusion, and dynamically improve their weight ratio during the training process. After training, the model can achieve 96.1% of the types of chest X-Ray images accuracy on the test set. This technology has higher sensitivity than radiologists in the screening and diagnosis of lung nodules. As an auxiliary diagnostic technology, it can help radiologists improve work efficiency and diagnostic accuracy.