PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION

Shuichi Kawano, Ibuki Hoshina, Kaito Shimamura, S. Konishi
{"title":"PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION","authors":"Shuichi Kawano, Ibuki Hoshina, Kaito Shimamura, S. Konishi","doi":"10.5183/JJSCS.1501001_220","DOIUrl":null,"url":null,"abstract":"We consider the Bayesian lasso for regression, which can be interpreted as an L 1 norm regularization based on a Bayesian approach when the Laplace or double-exponential prior distribution is placed on the regression coefficients. A crucial issue is an appropriate choice of the values of hyperparameters included in the prior distributions, which essentially control the sparsity in the estimated model. To choose the values of tuning parameters, we introduce a model selection criterion for evaluating a Bayesian predictive distribution for the Bayesian lasso. Numerical results are presented to illustrate the properties of our sparse Bayesian modeling procedure.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1501001_220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider the Bayesian lasso for regression, which can be interpreted as an L 1 norm regularization based on a Bayesian approach when the Laplace or double-exponential prior distribution is placed on the regression coefficients. A crucial issue is an appropriate choice of the values of hyperparameters included in the prior distributions, which essentially control the sparsity in the estimated model. To choose the values of tuning parameters, we introduce a model selection criterion for evaluating a Bayesian predictive distribution for the Bayesian lasso. Numerical results are presented to illustrate the properties of our sparse Bayesian modeling procedure.
贝叶斯套索回归的预测模型选择准则
我们考虑回归的贝叶斯套索,当回归系数上有拉普拉斯或双指数先验分布时,它可以被解释为基于贝叶斯方法的L 1范数正则化。一个关键问题是先验分布中包含的超参数值的适当选择,这从本质上控制了估计模型的稀疏性。为了选择调整参数的值,我们引入了一个模型选择准则来评估贝叶斯套索的贝叶斯预测分布。数值结果说明了稀疏贝叶斯建模方法的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信