Non-Minimal Solvers for Relative Pose Estimation with a Known Relative Rotation Angle

Deshun Hu
{"title":"Non-Minimal Solvers for Relative Pose Estimation with a Known Relative Rotation Angle","authors":"Deshun Hu","doi":"10.1109/ICRA48891.2023.10160580","DOIUrl":null,"url":null,"abstract":"Knowing the relative rotation angle improves relative pose estimation accuracy. We consider the problem of computing relative motion from a non-minimal number of correspondences with a known relative rotation angle. While several solvers for minimum correspondences have been proposed, no non-minimal solver for this problem currently exists. In this work, we propose two non-minimal solvers for this problem. The first solver solves the problem using convex relaxation and semidefinite programming, yielding certifiable solutions. The second method approaches the problem through local eigenvalue optimization with random initialization. Increasing the number of initial guesses lowers the chances of missing the correct solution. We conduct experiments on synthetic and real data, confirming our methods' advantages over competing methods.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowing the relative rotation angle improves relative pose estimation accuracy. We consider the problem of computing relative motion from a non-minimal number of correspondences with a known relative rotation angle. While several solvers for minimum correspondences have been proposed, no non-minimal solver for this problem currently exists. In this work, we propose two non-minimal solvers for this problem. The first solver solves the problem using convex relaxation and semidefinite programming, yielding certifiable solutions. The second method approaches the problem through local eigenvalue optimization with random initialization. Increasing the number of initial guesses lowers the chances of missing the correct solution. We conduct experiments on synthetic and real data, confirming our methods' advantages over competing methods.
已知相对旋转角度的相对姿态估计的非最小解
知道相对旋转角度可以提高相对姿态估计的精度。我们考虑了从已知相对旋转角的非最小对应数计算相对运动的问题。虽然已经提出了几种最小对应的求解方法,但目前还没有非最小对应的求解方法。在这项工作中,我们提出了这个问题的两个非最小解。第一个求解器利用凸松弛和半定规划求解问题,得到可证明的解。第二种方法是通过随机初始化的局部特征值优化来解决问题。增加最初猜测的次数可以降低错过正确答案的几率。我们对合成数据和真实数据进行了实验,证实了我们的方法优于竞争对手的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信