Using existing large-area land-cover maps to classify spatially high resolution images

Peter Kennedy, Jinkai Zhang, K. Staenz, C. Coburn
{"title":"Using existing large-area land-cover maps to classify spatially high resolution images","authors":"Peter Kennedy, Jinkai Zhang, K. Staenz, C. Coburn","doi":"10.1109/IGARSS.2014.6947545","DOIUrl":null,"url":null,"abstract":"This paper presents Template-Guided Classification (TGC), a technique for using the class labels of existing large-area land-cover maps to automatically classify spatially highresolution images. TGC uses land-cover images as templates to guide hierarchical clustering and labeling. To test TGC, 10-m SPOT 5 HRG images and 1-m colour orthophotos of the Vermilion River watershed, Canada were classified into forest/non-forest classes using the 25-m Earth Observation for the Sustainable Development of forests (EOSD) landcover map as a template. Although the average accuracies of the 10-m SPOT classifications were poor, the 1-m orthophoto accuracies were much higher (87% forest user's accuracy, 82% forest producers accuracy, 93% overall accuracy). TGC classification accuracies were highly variable. Further investigation is needed to determine whether TGC can be made into a robust procedure.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents Template-Guided Classification (TGC), a technique for using the class labels of existing large-area land-cover maps to automatically classify spatially highresolution images. TGC uses land-cover images as templates to guide hierarchical clustering and labeling. To test TGC, 10-m SPOT 5 HRG images and 1-m colour orthophotos of the Vermilion River watershed, Canada were classified into forest/non-forest classes using the 25-m Earth Observation for the Sustainable Development of forests (EOSD) landcover map as a template. Although the average accuracies of the 10-m SPOT classifications were poor, the 1-m orthophoto accuracies were much higher (87% forest user's accuracy, 82% forest producers accuracy, 93% overall accuracy). TGC classification accuracies were highly variable. Further investigation is needed to determine whether TGC can be made into a robust procedure.
利用现有大面积土地覆盖图对空间高分辨率图像进行分类
本文提出了一种利用已有大面积土地覆盖地图的类标对空间高分辨率图像进行自动分类的方法——模板引导分类(Template-Guided Classification, TGC)。TGC使用土地覆盖图像作为模板来指导分层聚类和标记。为了测试TGC, 10米spot5 HRG图像和1米彩色正射影像,加拿大朱米尔河流域,使用25米地球观测森林可持续发展(EOSD)土地覆盖图作为模板,分为森林/非森林类。虽然10米SPOT分类的平均精度较差,但1米正射影像的精度要高得多(森林用户精度为87%,森林生产者精度为82%,总体精度为93%)。TGC分类精度变化很大。需要进一步的研究来确定TGC是否可以成为一个可靠的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信