Fengjie Xu, Chang-Hua Zhang, Zhongshu Chen, Zhekai Du, Lei Han, Lin Zuo
{"title":"CMRD-Net: An Improved Method for Underwater Image Enhancement","authors":"Fengjie Xu, Chang-Hua Zhang, Zhongshu Chen, Zhekai Du, Lei Han, Lin Zuo","doi":"10.1145/3469877.3493590","DOIUrl":null,"url":null,"abstract":"Underwater image enhancement is a challenging task due to the degradation of image quality in underwater complicated lighting conditions and scenes. In recent years, most methods improve the visual quality of underwater images by using deep Convolutional Neural Networks and Generative Adversarial Networks. However, the majority of existing methods do not consider that the attenuation degrees of R, G, B channels of the underwater image are different, leading to a sub-optimal performance. Based on this observation, we propose a Channel-wise Multi-scale Residual Dense Network called CMRD-Net, which learns the weights of different color channels instead of treating all the channels equally. More specifically, the Channel-wise Multi-scale Fusion Residual Attention Block (CMFRAB) is involved in the CMRD-Net to obtain a better ability of feature extraction and representation. Notably, we evaluate the effectiveness of our model by comparing it with recent state-of-the-art methods. Extensive experimental results show that our method can achieve a satisfactory performance on a popular public dataset.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3493590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater image enhancement is a challenging task due to the degradation of image quality in underwater complicated lighting conditions and scenes. In recent years, most methods improve the visual quality of underwater images by using deep Convolutional Neural Networks and Generative Adversarial Networks. However, the majority of existing methods do not consider that the attenuation degrees of R, G, B channels of the underwater image are different, leading to a sub-optimal performance. Based on this observation, we propose a Channel-wise Multi-scale Residual Dense Network called CMRD-Net, which learns the weights of different color channels instead of treating all the channels equally. More specifically, the Channel-wise Multi-scale Fusion Residual Attention Block (CMFRAB) is involved in the CMRD-Net to obtain a better ability of feature extraction and representation. Notably, we evaluate the effectiveness of our model by comparing it with recent state-of-the-art methods. Extensive experimental results show that our method can achieve a satisfactory performance on a popular public dataset.