An Attack on the Privacy of Sanitized Data that Fuses the Outputs of Multiple Data Miners

Michal Sramka, R. Safavi-Naini, J. Denzinger
{"title":"An Attack on the Privacy of Sanitized Data that Fuses the Outputs of Multiple Data Miners","authors":"Michal Sramka, R. Safavi-Naini, J. Denzinger","doi":"10.1109/ICDMW.2009.28","DOIUrl":null,"url":null,"abstract":"Data sanitization has been used to restrict re-identification of individuals and disclosure of sensitive information from published data. We propose an attack on the privacy of the published sanitized data that simply fuses outputs of multiple data miners that are applied to the sanitized data. That attack is practical and does not require any background or additional information. We use a number of experiments to show scenarios where an adversary can combine outputs of multiple miners using a simple fusion strategy to increase their success chance of breaching privacy of individuals whose data is stored in the database. The fusion attack provides a powerful method of breaching privacy in the form of partial disclosure, for both anonymized and perturbed data. It also provides an effective way of approximating predictions of the best miner (a miner that provides the best results among all considered miners) when this miner cannot be determined.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Data sanitization has been used to restrict re-identification of individuals and disclosure of sensitive information from published data. We propose an attack on the privacy of the published sanitized data that simply fuses outputs of multiple data miners that are applied to the sanitized data. That attack is practical and does not require any background or additional information. We use a number of experiments to show scenarios where an adversary can combine outputs of multiple miners using a simple fusion strategy to increase their success chance of breaching privacy of individuals whose data is stored in the database. The fusion attack provides a powerful method of breaching privacy in the form of partial disclosure, for both anonymized and perturbed data. It also provides an effective way of approximating predictions of the best miner (a miner that provides the best results among all considered miners) when this miner cannot be determined.
对融合多个数据挖掘者输出的净化数据隐私的攻击
数据清理已用于限制对个人的重新识别和从已公布数据中披露敏感信息。我们提出了一种针对已发布的已消毒数据的隐私性的攻击,该攻击简单地融合了应用于已消毒数据的多个数据挖掘者的输出。这种攻击是实用的,不需要任何背景或额外的信息。我们使用了许多实验来展示攻击者可以使用简单的融合策略将多个矿工的输出组合在一起的场景,以增加他们成功侵犯数据存储在数据库中的个人隐私的机会。融合攻击以部分披露的形式为匿名和受干扰的数据提供了一种强大的侵犯隐私的方法。它还提供了一种有效的方法,可以在无法确定最佳矿工(在所有被考虑的矿工中提供最佳结果的矿工)时逼近最佳矿工的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信