Digital Transformation of Offshore Structure Weight Control Management into Digitally Integrated and Intelligent Analytical Tool

Nur Dalila Alias, Bak Shiiun Wong, Wan Zalikha Anas, Nur Amalina Sulaiman, Mildred Vanessa Epui, Azam A Rahman, A. R. A Rahman, Sue Jane Yeoh, A. Abdollahzadeh, Linda William Ngadan, Horng Eng Tang, Wai Fun Chooi, R. Khan, Sook Moi Ng, S. N. Saminal, M. Ibrahim, Marklin Hamid, A. S. Suhaili, M. S. F. M Hisham
{"title":"Digital Transformation of Offshore Structure Weight Control Management into Digitally Integrated and Intelligent Analytical Tool","authors":"Nur Dalila Alias, Bak Shiiun Wong, Wan Zalikha Anas, Nur Amalina Sulaiman, Mildred Vanessa Epui, Azam A Rahman, A. R. A Rahman, Sue Jane Yeoh, A. Abdollahzadeh, Linda William Ngadan, Horng Eng Tang, Wai Fun Chooi, R. Khan, Sook Moi Ng, S. N. Saminal, M. Ibrahim, Marklin Hamid, A. S. Suhaili, M. S. F. M Hisham","doi":"10.2118/210712-ms","DOIUrl":null,"url":null,"abstract":"\n Leveraged on the abundant weight data comprised of more than 200 offshore platforms, a smart digitalized analytical tool called i-WEIGHT, an integrated weight control tool consisting of three (3) main modules: centralized multi-discipline weight database module for all offshore platforms, seamlessly linked with Insights dashboard module in providing actionable insights, and weight predictive module supported by Machine Learning (ML) model was developed. This paper discussed the Minimum Viable Product (MVP) Phase 1 development outcome, using a close-loop weight control ecosystem for continuous update of validated weight data in Module 1, and eventually improve & enhance capability of both the EDA and Predictive module. Using a supervised machine learning algorithms, the identified target variables were observed to provide weight prediction between 16% to 38% of Mean Absolute Percentage Error (MAPE), using Extreme Gradient Boosting Regressor (XGBR) algorithm. Top 10 important features were identified for each target variable, which provide insights to the operators on critical data required for topside with identified missing equipment weight data for future i-WEIGHT improvement. Based on more than 200 integrated platform topside data gathered for this study, consolidated insights from the data enabled operators to identify the threat of current data quality and thus bringing forward a promising opportunity to enhance platform weight data management system. Having a centralized and automated platform weights data, this tool has the potential answers for United Nations’ Sustainability Development Goals, in particular Goal 9.4, where the study represents a small but crucial step to upgrade from an existing conventional process into a digitally driven operation, introducing a sustainable ecosystem in offshore structure weight management, thus fostering sustainable growth within the industry.","PeriodicalId":151564,"journal":{"name":"Day 1 Mon, October 17, 2022","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, October 17, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/210712-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraged on the abundant weight data comprised of more than 200 offshore platforms, a smart digitalized analytical tool called i-WEIGHT, an integrated weight control tool consisting of three (3) main modules: centralized multi-discipline weight database module for all offshore platforms, seamlessly linked with Insights dashboard module in providing actionable insights, and weight predictive module supported by Machine Learning (ML) model was developed. This paper discussed the Minimum Viable Product (MVP) Phase 1 development outcome, using a close-loop weight control ecosystem for continuous update of validated weight data in Module 1, and eventually improve & enhance capability of both the EDA and Predictive module. Using a supervised machine learning algorithms, the identified target variables were observed to provide weight prediction between 16% to 38% of Mean Absolute Percentage Error (MAPE), using Extreme Gradient Boosting Regressor (XGBR) algorithm. Top 10 important features were identified for each target variable, which provide insights to the operators on critical data required for topside with identified missing equipment weight data for future i-WEIGHT improvement. Based on more than 200 integrated platform topside data gathered for this study, consolidated insights from the data enabled operators to identify the threat of current data quality and thus bringing forward a promising opportunity to enhance platform weight data management system. Having a centralized and automated platform weights data, this tool has the potential answers for United Nations’ Sustainability Development Goals, in particular Goal 9.4, where the study represents a small but crucial step to upgrade from an existing conventional process into a digitally driven operation, introducing a sustainable ecosystem in offshore structure weight management, thus fostering sustainable growth within the industry.
海洋结构重量控制管理数字化转型为数字化集成智能分析工具
利用200多个海上平台的丰富重量数据,开发了一种名为i-WEIGHT的智能数字化分析工具,它是一种集成的重量控制工具,由三(3)个主要模块组成:所有海上平台的集中式多学科重量数据库模块,与Insights仪表板模块无缝连接,提供可操作的见解,以及由机器学习(ML)模型支持的重量预测模块。本文讨论了最小可行产品(MVP)第一阶段的开发结果,在模块1中使用闭环权重控制生态系统来持续更新经过验证的权重数据,并最终改进和增强EDA和Predictive模块的能力。使用监督机器学习算法,观察到识别的目标变量使用极端梯度增强回归(XGBR)算法提供16%至38%的平均绝对百分比误差(MAPE)的权重预测。为每个目标变量确定了前10个重要特征,这些特征为作业者提供了关于上层平台所需的关键数据的见解,并确定了缺失的设备重量数据,以便将来改进i-WEIGHT。基于本研究收集的200多个综合平台上部数据,从数据中获得的综合见解使作业者能够识别当前数据质量的威胁,从而提出了加强平台重量数据管理系统的有希望的机会。该工具拥有一个集中和自动化的平台权重数据,为联合国可持续发展目标提供了潜在的答案,特别是目标9.4,该研究代表了从现有传统流程升级为数字驱动操作的一个小而关键的步骤,在海上结构重量管理中引入了可持续的生态系统,从而促进了行业的可持续增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信