Fusion of expert knowledge with data using belief functions: a case study in waste-water treatment

S. Populaire, Joëlle Blanc, Thierry Denœux, Philippe Ginestet
{"title":"Fusion of expert knowledge with data using belief functions: a case study in waste-water treatment","authors":"S. Populaire, Joëlle Blanc, Thierry Denœux, Philippe Ginestet","doi":"10.1109/ICIF.2002.1021011","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for combining expert knowledge with information from statistical data, in classification and prediction problems. The method is based on (1) a case-based approach allowing to predict a quantity of interest from past cases in the form of a belief function, (2) Bayesian networks for modelling expert knowledge and (3) a tuning mechanism allowing to optimally discount information sources by optimizing a performance criterion. This methodology is applied to the prediction of chemical oxygen demand solubility in waste-water The approach is expected to be useful in situations where both small databases and partial expert knowledge are available.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a methodology for combining expert knowledge with information from statistical data, in classification and prediction problems. The method is based on (1) a case-based approach allowing to predict a quantity of interest from past cases in the form of a belief function, (2) Bayesian networks for modelling expert knowledge and (3) a tuning mechanism allowing to optimally discount information sources by optimizing a performance criterion. This methodology is applied to the prediction of chemical oxygen demand solubility in waste-water The approach is expected to be useful in situations where both small databases and partial expert knowledge are available.
基于信念函数的专家知识与数据融合:以废水处理为例
本文提出了一种将专家知识与统计数据信息相结合的方法,用于分类和预测问题。该方法基于(1)基于案例的方法,允许以信念函数的形式从过去的案例中预测感兴趣的数量,(2)建模专家知识的贝叶斯网络,以及(3)通过优化性能标准来优化折扣信息源的调谐机制。该方法应用于预测废水中的化学需氧量溶解度。该方法预计将在小型数据库和部分专家知识可用的情况下有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信