S. Populaire, Joëlle Blanc, Thierry Denœux, Philippe Ginestet
{"title":"Fusion of expert knowledge with data using belief functions: a case study in waste-water treatment","authors":"S. Populaire, Joëlle Blanc, Thierry Denœux, Philippe Ginestet","doi":"10.1109/ICIF.2002.1021011","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for combining expert knowledge with information from statistical data, in classification and prediction problems. The method is based on (1) a case-based approach allowing to predict a quantity of interest from past cases in the form of a belief function, (2) Bayesian networks for modelling expert knowledge and (3) a tuning mechanism allowing to optimally discount information sources by optimizing a performance criterion. This methodology is applied to the prediction of chemical oxygen demand solubility in waste-water The approach is expected to be useful in situations where both small databases and partial expert knowledge are available.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents a methodology for combining expert knowledge with information from statistical data, in classification and prediction problems. The method is based on (1) a case-based approach allowing to predict a quantity of interest from past cases in the form of a belief function, (2) Bayesian networks for modelling expert knowledge and (3) a tuning mechanism allowing to optimally discount information sources by optimizing a performance criterion. This methodology is applied to the prediction of chemical oxygen demand solubility in waste-water The approach is expected to be useful in situations where both small databases and partial expert knowledge are available.