Hydrogeological dissimilarity of geodynamically different terranes

V. Glotov
{"title":"Hydrogeological dissimilarity of geodynamically different terranes","authors":"V. Glotov","doi":"10.21285/2686-9993-2021-44-2-134-140","DOIUrl":null,"url":null,"abstract":"The article presents and analyzes the data on ground waters of active (suprapermafrost) and hindered (subpermafrost) water exchange of geodynamically different terrains in order to prove the hydrogeological importance of their historical and tectonic characteristics. On the example of Trans-Polar Chukotka it is shown that, under suprapermafrost conditions, the ubiquitous eluvial-deluvial nappes are the most water-abundant on the terrane – a fragment of the passive continental margin, whereas they are the least water-abundant on the terrains of the active margin. Hydrogeological situation changes under subpermafrost conditions: more permeable and water-retaining rocks compose the terranes of the active margin. These differences are associated with the level of rock tectonic decompaction and, accordingly, with different intensity of weathering processes in the terrane rocks of different geodynamic origin in suprapermafrost and subpermafrost conditions. The hypergenesis zone on the terranes of the passive continental margin features coarse-grained rock weathering products accumulated in relatively calm geological and historical environments, the aggregate is sandy. The terranes of the active margin, which underwent long-term subvertical and subhorizontal displacements contain more fine-grained weathering products; the aggregate includes sandy loam and clay sand. Since the permafrost strata in both Trans-Polar Chukotka and Eastern Siberia is greater than the depth of hypergene transformations, the terranes of the active continental margin, the rocks of which were impacted by tectonic decompaction processes, mainly of a strike-slip and thrust nature, feature greater water abundance in subpermafrost conditions.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2021-44-2-134-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents and analyzes the data on ground waters of active (suprapermafrost) and hindered (subpermafrost) water exchange of geodynamically different terrains in order to prove the hydrogeological importance of their historical and tectonic characteristics. On the example of Trans-Polar Chukotka it is shown that, under suprapermafrost conditions, the ubiquitous eluvial-deluvial nappes are the most water-abundant on the terrane – a fragment of the passive continental margin, whereas they are the least water-abundant on the terrains of the active margin. Hydrogeological situation changes under subpermafrost conditions: more permeable and water-retaining rocks compose the terranes of the active margin. These differences are associated with the level of rock tectonic decompaction and, accordingly, with different intensity of weathering processes in the terrane rocks of different geodynamic origin in suprapermafrost and subpermafrost conditions. The hypergenesis zone on the terranes of the passive continental margin features coarse-grained rock weathering products accumulated in relatively calm geological and historical environments, the aggregate is sandy. The terranes of the active margin, which underwent long-term subvertical and subhorizontal displacements contain more fine-grained weathering products; the aggregate includes sandy loam and clay sand. Since the permafrost strata in both Trans-Polar Chukotka and Eastern Siberia is greater than the depth of hypergene transformations, the terranes of the active continental margin, the rocks of which were impacted by tectonic decompaction processes, mainly of a strike-slip and thrust nature, feature greater water abundance in subpermafrost conditions.
不同地质体的水文地质差异性
本文介绍和分析了地球动力学上不同地形的活跃(上层)和受阻(下层)水交换的地下水资料,以证明其历史和构造特征的水文地质意义。以跨极楚科奇为例,表明在上冻土条件下,无处不在的淋积-洪积推覆体在被动大陆边缘的地形上是最富水的,而在活动大陆边缘的地形上是最不富水的。在次多年冻土条件下,水文地质情况发生了变化:活动边缘的岩层具有更多的渗透性和保水性。这些差异与岩石构造分解程度有关,因此与不同地球动力成因的地质体在上冻土和次冻土条件下的风化作用强度不同有关。被动大陆边缘地体上的增生带以相对平静的地质历史环境下沉积的粗粒岩石风化产物为特征,骨料为砂质。活动边缘的地层经历了长期的亚垂直和亚水平位移,含有较多的细粒风化产物;骨料包括砂壤土和粘土砂。由于跨极地楚科奇和东西伯利亚的多年冻土地层都大于超生转化的深度,活动大陆边缘的岩层受构造分解作用的影响,主要是走滑和逆冲性质,在亚多年冻土条件下具有更大的水丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信