IDENTIFICATION OF SIGNATURE USING ZONING METHODS AND SUPPORT VECTOR MACHINE

Y. Christyono, Ajub Ajulian Zahra
{"title":"IDENTIFICATION OF SIGNATURE USING ZONING METHODS AND SUPPORT VECTOR MACHINE","authors":"Y. Christyono, Ajub Ajulian Zahra","doi":"10.53555/eijse.v4i4.150","DOIUrl":null,"url":null,"abstract":"Identification of signatures is the process of identifying and defining a person’s signature. Identification of signatures including biometics that use natural human behavior. Identification of signatures can be used in security areas such as money withdrawal permits, check validation, credit card transactions and more.  During this signature identification is done manually. Difficulty in this way, if the signature to be identified is large, the examiner will experience fatigue. To simplify it needs to be developed to create a computerized signature identification system. In this research, the development of this signature identification is done using the method of zoning and Support Vector Machine (SVM) classification. Based on the tests that have been done, normal test data test resulted in recognition accuracy of 95.31%. In testing the test data with disturbance obtained accuracy of 20.31%.  While  the  testing  of artificial  signatures  generated  an  accuracy  of  70%.  In  addition  to  the  registered  signature image  pattern,  there  are  also  signature  images  that  are  not  registered  in  the  database.  The accuracy obtained in this test is 100%.","PeriodicalId":354866,"journal":{"name":"EPH - International Journal of Science And Engineering","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPH - International Journal of Science And Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53555/eijse.v4i4.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identification of signatures is the process of identifying and defining a person’s signature. Identification of signatures including biometics that use natural human behavior. Identification of signatures can be used in security areas such as money withdrawal permits, check validation, credit card transactions and more.  During this signature identification is done manually. Difficulty in this way, if the signature to be identified is large, the examiner will experience fatigue. To simplify it needs to be developed to create a computerized signature identification system. In this research, the development of this signature identification is done using the method of zoning and Support Vector Machine (SVM) classification. Based on the tests that have been done, normal test data test resulted in recognition accuracy of 95.31%. In testing the test data with disturbance obtained accuracy of 20.31%.  While  the  testing  of artificial  signatures  generated  an  accuracy  of  70%.  In  addition  to  the  registered  signature image  pattern,  there  are  also  signature  images  that  are  not  registered  in  the  database.  The accuracy obtained in this test is 100%.
使用分区方法和支持向量机识别签名
签名识别是识别和定义一个人的签名的过程。识别签名,包括使用自然人类行为的生物识别。签名识别可用于安全领域,如取款许可、支票验证、信用卡交易等。在此过程中,签名识别是手动完成的。这种方式的难度,如果待识别的签名较大,考官会感到疲劳。为了简化它,需要开发一个计算机签名识别系统。在本研究中,使用分区和支持向量机(SVM)分类的方法来开发该签名识别。根据已完成的测试,正常测试数据测试的识别准确率为95.31%。在有干扰的测试中,测试数据的准确度为20.31%。而人工签名测试的准确率为70%。除了已注册的签名图像模式之外,还有未在数据库中注册的签名图像。在这个测试中获得的准确度是100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信