Robust L2-Gain Observation for structured uncertainties: An LMI approach

B. Bayon, G. Scorletti, E. Blanco
{"title":"Robust L2-Gain Observation for structured uncertainties: An LMI approach","authors":"B. Bayon, G. Scorletti, E. Blanco","doi":"10.1109/CDC.2011.6160797","DOIUrl":null,"url":null,"abstract":"The robust L2-gain estimation is investigated for general uncertain systems with structured uncertainties. A new estimation structure is introduced: the Augmented-Gain Observer which encompasses both filters and observers and allows robust estimation even for some classes of unstable systems. Our approach is based on a separation of graphs theorem using frequency dependent Integral Quadratic Constraints. We prove that the design of an Augmented-Gain Observer ensuring a robust L2-gain performance can be expressed as a convex optimization problem. This problem involves Linear Matrix Inequalities constraints and can be solved using an efficient algorithm. A numerical example illustrates the interest of the method.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6160797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The robust L2-gain estimation is investigated for general uncertain systems with structured uncertainties. A new estimation structure is introduced: the Augmented-Gain Observer which encompasses both filters and observers and allows robust estimation even for some classes of unstable systems. Our approach is based on a separation of graphs theorem using frequency dependent Integral Quadratic Constraints. We prove that the design of an Augmented-Gain Observer ensuring a robust L2-gain performance can be expressed as a convex optimization problem. This problem involves Linear Matrix Inequalities constraints and can be solved using an efficient algorithm. A numerical example illustrates the interest of the method.
结构不确定性的鲁棒l2增益观测:LMI方法
研究了具有结构不确定性的一般不确定系统的鲁棒l2增益估计。引入了一种新的估计结构:增增益观测器,它包含了滤波器和观测器,即使对某些不稳定系统也能进行鲁棒估计。我们的方法是基于使用频率相关的积分二次约束的图分离定理。证明了保证鲁棒l2增益性能的增增益观测器的设计可以表示为一个凸优化问题。这个问题涉及到线性矩阵不等式的约束,可以用一种有效的算法来求解。数值算例说明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信