Application of Asymmetric Fuzzy Linear Programming in EIT

Mingliang Ding, Shihong Yue, Jia Li, Yaru Wang, Xiaofeng Gao, Huaxiang Wang
{"title":"Application of Asymmetric Fuzzy Linear Programming in EIT","authors":"Mingliang Ding, Shihong Yue, Jia Li, Yaru Wang, Xiaofeng Gao, Huaxiang Wang","doi":"10.1109/I2MTC.2019.8827143","DOIUrl":null,"url":null,"abstract":"There are inconsistent, uncertain and incomplete characteristics in Electrical impedance tomography (EIT) due to two natural problems of ill-posedness and ‘soft field’ effect. The traditional EIT inverse problem solving algorithms are based on deterministic objective functions and constraints which cannot efficiently represent the natural characteristics in the EIT process. Consequently, the EIT images have low spatial resolution. Inversely, the fuzzy set theory has been validated to represent imprecise data. To represent the natural characteristics in the EIT process, an asymmetric fuzzy linear programming (AFLP) model is applied to find the optimal solution for EIT imaging process. Moreover, the parameters in AFLP are alternatively optimized. Experimental results show that AFLP has better imaging effect and higher robustness than the traditional algorithms. Compared with the existing symmetrical fuzzy linear programming (SFLP) algorithm, AFLP algorithm has high resolution for both discrete and continuous objects. These results show that AFLP algorithm provides an effective solution to enhance the EIT imaging resolution.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8827143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are inconsistent, uncertain and incomplete characteristics in Electrical impedance tomography (EIT) due to two natural problems of ill-posedness and ‘soft field’ effect. The traditional EIT inverse problem solving algorithms are based on deterministic objective functions and constraints which cannot efficiently represent the natural characteristics in the EIT process. Consequently, the EIT images have low spatial resolution. Inversely, the fuzzy set theory has been validated to represent imprecise data. To represent the natural characteristics in the EIT process, an asymmetric fuzzy linear programming (AFLP) model is applied to find the optimal solution for EIT imaging process. Moreover, the parameters in AFLP are alternatively optimized. Experimental results show that AFLP has better imaging effect and higher robustness than the traditional algorithms. Compared with the existing symmetrical fuzzy linear programming (SFLP) algorithm, AFLP algorithm has high resolution for both discrete and continuous objects. These results show that AFLP algorithm provides an effective solution to enhance the EIT imaging resolution.
不对称模糊线性规划在企业it中的应用
电阻抗层析成像(EIT)由于固有的病态和“软场”效应,存在特征不一致、不确定和不完整的问题。传统的EIT反问题求解算法基于确定性的目标函数和约束,不能有效地表征EIT过程的自然特征。因此,EIT图像的空间分辨率较低。相反,模糊集理论已被证明可以表示不精确的数据。为了反映EIT成像过程的自然特征,采用非对称模糊线性规划模型求解EIT成像过程的最优解。此外,AFLP中的参数进行了交替优化。实验结果表明,与传统算法相比,AFLP具有更好的成像效果和更高的鲁棒性。与现有的对称模糊线性规划(SFLP)算法相比,AFLP算法对离散和连续目标都具有较高的分辨率。结果表明,AFLP算法为提高EIT成像分辨率提供了一种有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信