A Real-Time Implementation of a PBIL Based Stabilizing Controller for Synchronous Generator

K. Folly, G. Venayagamoorthy
{"title":"A Real-Time Implementation of a PBIL Based Stabilizing Controller for Synchronous Generator","authors":"K. Folly, G. Venayagamoorthy","doi":"10.1109/IAS.2009.5324806","DOIUrl":null,"url":null,"abstract":"This paper presents the optimal tuning of power system stabilizer parameters using a newly introduced evolutionary algorithm called Population Based Incremental Learning (PBIL). To robustly stabilize the system, an objective function that minimizes the infinity norm of the closed-loop system is introduced such that the parameters of a fixed structure PSS are optimally tuned and the controller stabilizes a pre-specified set of system models. The PBIL-PSS is compared with the Conventional PSS (CPSS). The simulation results presented in this paper show that the proposed PBIL- PSS is more effective than the Conventional PSS in damping the low frequency oscillations. The performance of the proposed PSS is also evaluated using the Real Time Digital Simulator (RTDS). The experimental results obtained from the RTDS confirm the proposed controller is robust for under small disturbance.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the optimal tuning of power system stabilizer parameters using a newly introduced evolutionary algorithm called Population Based Incremental Learning (PBIL). To robustly stabilize the system, an objective function that minimizes the infinity norm of the closed-loop system is introduced such that the parameters of a fixed structure PSS are optimally tuned and the controller stabilizes a pre-specified set of system models. The PBIL-PSS is compared with the Conventional PSS (CPSS). The simulation results presented in this paper show that the proposed PBIL- PSS is more effective than the Conventional PSS in damping the low frequency oscillations. The performance of the proposed PSS is also evaluated using the Real Time Digital Simulator (RTDS). The experimental results obtained from the RTDS confirm the proposed controller is robust for under small disturbance.
基于PBIL的同步发电机稳定控制器的实时实现
本文提出了一种新的基于种群的增量学习(PBIL)进化算法,用于电力系统稳定器参数的最优整定。为了使系统鲁棒稳定,引入了使闭环系统无穷范数最小的目标函数,使固定结构PSS的参数得到最优调谐,控制器稳定了预先指定的一组系统模型。将PBIL-PSS与常规PSS (CPSS)进行了比较。仿真结果表明,所提出的PBIL- PSS在抑制低频振荡方面比传统的PSS更有效。利用实时数字模拟器(RTDS)对所提出的PSS的性能进行了评估。RTDS实验结果表明,该控制器在小扰动下具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信