Research of improved probability data association algorithm for multi-target tracking

Jiang ZhengWang, L. Yinya, Mao Mingxiu, Chen Li, Guo Zhi
{"title":"Research of improved probability data association algorithm for multi-target tracking","authors":"Jiang ZhengWang, L. Yinya, Mao Mingxiu, Chen Li, Guo Zhi","doi":"10.1109/CCDC.2009.5194908","DOIUrl":null,"url":null,"abstract":"An improved probabilistic data association is proposed to overcome both the drawback of complication in joint probabilistic data association and the unneutrality of multi-targets processing by probabilistic data association. It incorporates the radar Doppler measurement information and modifies weighting of state estimation of measurements in the common region, and then makes the final estimation more exact and improves further performance. The theoretical analysis and Monte-Carlo simulation results show that the algorithm has small computation cost and a better real-time tracking performance.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5194908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An improved probabilistic data association is proposed to overcome both the drawback of complication in joint probabilistic data association and the unneutrality of multi-targets processing by probabilistic data association. It incorporates the radar Doppler measurement information and modifies weighting of state estimation of measurements in the common region, and then makes the final estimation more exact and improves further performance. The theoretical analysis and Monte-Carlo simulation results show that the algorithm has small computation cost and a better real-time tracking performance.
多目标跟踪的改进概率数据关联算法研究
针对联合概率数据关联的复杂性和概率数据关联处理多目标的不中立性,提出了一种改进的概率数据关联方法。该方法结合雷达多普勒测量信息,修改公共区域测量状态估计的权重,使最终估计更加精确,进一步提高了性能。理论分析和蒙特卡罗仿真结果表明,该算法计算量小,具有较好的实时跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信