{"title":"Shared Memory Verification for Multicore Chip Designs","authors":"Marleson Graf, L. Santos","doi":"10.5753/CTD.2021.15760","DOIUrl":null,"url":null,"abstract":"A multicore chip usually provides a shared memory abstraction implemented by a cache coherence protocol. On-chip coherence can scale gracefully as the number of cores grows, and it plays a major role for general purpose applications. Besides, multicore architectures are likely to relax constraints on store atomicity and on the ordering between loads and stores. As a result, the validation of shared memory faces two main challenges: the higher number of valid execution behaviors and the larger coherence protocol's state space. This dissertation faces those challenges and targets an important design automation phase: the (pre-silicon) functional verification of the shared memory subsystem of a multicore chip, whose behavior is specified by a memory consistency model (MCM). The main scientific contribution is a novel approach to the building of MCM checkers, along with technical contributions on random test generation and directed test generation. The contributions were reported by two papers in a premier IEEE/ACM conference and two articles in the most prestigious IEEE journal on Computer Aided Design of Integrated Circuits and Systems.","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/CTD.2021.15760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A multicore chip usually provides a shared memory abstraction implemented by a cache coherence protocol. On-chip coherence can scale gracefully as the number of cores grows, and it plays a major role for general purpose applications. Besides, multicore architectures are likely to relax constraints on store atomicity and on the ordering between loads and stores. As a result, the validation of shared memory faces two main challenges: the higher number of valid execution behaviors and the larger coherence protocol's state space. This dissertation faces those challenges and targets an important design automation phase: the (pre-silicon) functional verification of the shared memory subsystem of a multicore chip, whose behavior is specified by a memory consistency model (MCM). The main scientific contribution is a novel approach to the building of MCM checkers, along with technical contributions on random test generation and directed test generation. The contributions were reported by two papers in a premier IEEE/ACM conference and two articles in the most prestigious IEEE journal on Computer Aided Design of Integrated Circuits and Systems.