ASYMPTOTIC PROPERTIES OF MONTE CARLO STRATEGIES FOR A CUMULATIVE LINK MODEL

K. Kamatani
{"title":"ASYMPTOTIC PROPERTIES OF MONTE CARLO STRATEGIES FOR A CUMULATIVE LINK MODEL","authors":"K. Kamatani","doi":"10.14490/JJSS.44.1","DOIUrl":null,"url":null,"abstract":"For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure and the parameter-expanded data-augmentation procedure are considered to be remedies, but such strategies are still not free from poor convergence. In this paper, we propose a kind of the hybrid Markov chain Monte Carlo strategy. To evaluate the efficiency, a local non-degeneracy is introduced, and we also provide a numerical simulation to show the effect.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.44.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure and the parameter-expanded data-augmentation procedure are considered to be remedies, but such strategies are still not free from poor convergence. In this paper, we propose a kind of the hybrid Markov chain Monte Carlo strategy. To evaluate the efficiency, a local non-degeneracy is introduced, and we also provide a numerical simulation to show the effect.
累积链路模型蒙特卡罗策略的渐近性质
对于贝叶斯环境下的累积链模型,后验分布不能以封闭形式得到,只能采用近似方法。一种简单的数据增强策略被广泛用于此目的,但众所周知效果不佳。边际增广法和参数扩展数据增广法被认为是补救措施,但这些策略仍然存在收敛性差的问题。本文提出了一种混合马尔可夫链蒙特卡洛策略。为了评估效率,我们引入了局部不简并,并通过数值模拟来展示效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信