On Improving Convolutional Networks Based People Detection with Fisheye Cameras

Yun-Yi Hsieh, Sheng-Ho Chiang, Tsaipei Wang
{"title":"On Improving Convolutional Networks Based People Detection with Fisheye Cameras","authors":"Yun-Yi Hsieh, Sheng-Ho Chiang, Tsaipei Wang","doi":"10.1109/ISPACS51563.2021.9651043","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method to train convolutional neural networks for detecting people in images taken with ceiling-mounted fisheye cameras. While simply fine-tune existing detectors using annotated images lead to increased false positives due to lack of variety in the training data, we find that adding automatically computed backgrounds of the target scene in the training process yields much better detection accuracies. This allows us to build practical scene-specific human detectors.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new method to train convolutional neural networks for detecting people in images taken with ceiling-mounted fisheye cameras. While simply fine-tune existing detectors using annotated images lead to increased false positives due to lack of variety in the training data, we find that adding automatically computed backgrounds of the target scene in the training process yields much better detection accuracies. This allows us to build practical scene-specific human detectors.
改进基于卷积网络的鱼眼摄像机人物检测
在本文中,我们提出了一种新的方法来训练卷积神经网络来检测用天花板安装的鱼眼相机拍摄的图像中的人。虽然由于训练数据缺乏多样性,使用带注释的图像对现有检测器进行简单微调会导致误报增加,但我们发现在训练过程中添加自动计算的目标场景背景会产生更好的检测精度。这使我们能够构建实用的特定场景的人类探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信