Monomial size vs. Bit-complexity in Sums-of-Squares and Polynomial Calculus

Tuomas Hakoniemi
{"title":"Monomial size vs. Bit-complexity in Sums-of-Squares and Polynomial Calculus","authors":"Tuomas Hakoniemi","doi":"10.1109/LICS52264.2021.9470545","DOIUrl":null,"url":null,"abstract":"In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals $({\\text{PCR}}/\\mathbb{Q})$. We show that there is a set of polynomial constraints Qn over Boolean variables that has both SOS and ${\\text{PCR}}/\\mathbb{Q}$ refutations of degree 2 and thus with only polynomially many monomials, but for which any SOS or ${\\text{PCR}}/\\mathbb{Q}$ refutation must have exponential bit-complexity, when the rational coefficients are represented with their reduced fractions written in binary.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we consider the relationship between monomial-size and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus Resolution over rationals $({\text{PCR}}/\mathbb{Q})$. We show that there is a set of polynomial constraints Qn over Boolean variables that has both SOS and ${\text{PCR}}/\mathbb{Q}$ refutations of degree 2 and thus with only polynomially many monomials, but for which any SOS or ${\text{PCR}}/\mathbb{Q}$ refutation must have exponential bit-complexity, when the rational coefficients are represented with their reduced fractions written in binary.
平方和和多项式微积分中的单项大小与位复杂度
本文研究了在有理数$({\text{PCR}}/\mathbb{Q})$上多项式微积分解析中平方和(SOS)的一元大小与位复杂度之间的关系。我们证明了在布尔变量上存在一组多项式约束Qn,它同时具有SOS和${\text{PCR}}/\mathbb{Q}$ 2次的反驳,因此只有多项式多个单项式,但是对于任何SOS或${\text{PCR}}/\mathbb{Q}$反驳必须具有指数位复杂度,当有理系数用它们的简化分数表示为二进制时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信