Entity Decisions in Neural Language Modelling: Approaches and Problems

Jenny Kunz, Christian Hardmeier
{"title":"Entity Decisions in Neural Language Modelling: Approaches and Problems","authors":"Jenny Kunz, Christian Hardmeier","doi":"10.18653/v1/W19-2803","DOIUrl":null,"url":null,"abstract":"We explore different approaches to explicit entity modelling in language models (LM). We independently replicate two existing models in a controlled setup, introduce a simplified variant of one of the models and analyze their performance in direct comparison. Our results suggest that today’s models are limited as several stochastic variables make learning difficult. We show that the most challenging point in the systems is the decision if the next token is an entity token. The low precision and recall for this variable will lead to severe cascading errors. Our own simplified approach dispenses with the need for latent variables and improves the performance in the entity yes/no decision. A standard well-tuned baseline RNN-LM with a larger number of hidden units outperforms all entity-enabled LMs in terms of perplexity.","PeriodicalId":339077,"journal":{"name":"Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We explore different approaches to explicit entity modelling in language models (LM). We independently replicate two existing models in a controlled setup, introduce a simplified variant of one of the models and analyze their performance in direct comparison. Our results suggest that today’s models are limited as several stochastic variables make learning difficult. We show that the most challenging point in the systems is the decision if the next token is an entity token. The low precision and recall for this variable will lead to severe cascading errors. Our own simplified approach dispenses with the need for latent variables and improves the performance in the entity yes/no decision. A standard well-tuned baseline RNN-LM with a larger number of hidden units outperforms all entity-enabled LMs in terms of perplexity.
神经语言建模中的实体决策:方法和问题
我们探索了语言模型(LM)中显式实体建模的不同方法。我们在受控设置中独立复制两个现有模型,引入其中一个模型的简化变体,并通过直接比较分析它们的性能。我们的结果表明,由于一些随机变量使学习变得困难,今天的模型是有限的。我们展示了系统中最具挑战性的一点是决定下一个令牌是否为实体令牌。该变量的低精度和召回率将导致严重的级联错误。我们自己的简化方法免除了对潜在变量的需要,并提高了实体是/否决策的性能。在困惑度方面,具有大量隐藏单元的标准调优基线RNN-LM优于所有支持实体的lm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信