Some shared memory is desirable in parallel sparse matrix computation

A. George, E. Ng
{"title":"Some shared memory is desirable in parallel sparse matrix computation","authors":"A. George, E. Ng","doi":"10.1145/47917.47919","DOIUrl":null,"url":null,"abstract":"Over the past few years a number of algorithms for solving large sparse systems of equations on distributed-memory multiprocessors have been developed. In this article the authors point out that the properties of sparse matrix problems generally, along with the characteristics of these parallel algorithms for solving them, lead to inefficient use of memory. An example is presented to show that a (relatively small) amount of shared memory on an otherwise pure distributed-memory multiprocessor is very desirable when it is being used to execute these parallel algorithms.","PeriodicalId":177516,"journal":{"name":"ACM Signum Newsletter","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Signum Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/47917.47919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Over the past few years a number of algorithms for solving large sparse systems of equations on distributed-memory multiprocessors have been developed. In this article the authors point out that the properties of sparse matrix problems generally, along with the characteristics of these parallel algorithms for solving them, lead to inefficient use of memory. An example is presented to show that a (relatively small) amount of shared memory on an otherwise pure distributed-memory multiprocessor is very desirable when it is being used to execute these parallel algorithms.
在并行稀疏矩阵计算中,需要一定的共享内存
在过去的几年中,已经开发了许多在分布式存储多处理器上求解大型稀疏方程组的算法。在本文中,作者指出,稀疏矩阵问题的一般性质,以及这些并行算法解决稀疏矩阵问题的特点,导致内存使用效率低下。本文给出了一个示例,说明在纯分布式内存多处理器上使用(相对较小的)共享内存来执行这些并行算法是非常理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信