Weak Topology and a Differentiable Operator for Lipschitz Maps

A. Edalat
{"title":"Weak Topology and a Differentiable Operator for Lipschitz Maps","authors":"A. Edalat","doi":"10.1109/LICS.2008.49","DOIUrl":null,"url":null,"abstract":"We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuous. For finite dimensional Euclidean spaces, where the L-derivative and the Clarke gradient coincide, we provide a simple characterisation of the basic open subsets of the L-topology in terms of ties or primitive maps of functions. We use this to verify that the L-topology is strictly coarser than the well-known Lipschitz norm topology. We then develop a fundamental theorem of calculus of second order in finite dimensions showing that the continuous integral operator from the continuous Scott domain of non-empty convex and compact valued functions to the continuous Scott domain of ties is inverse to the continuous operator induced by the L-derivative.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuous. For finite dimensional Euclidean spaces, where the L-derivative and the Clarke gradient coincide, we provide a simple characterisation of the basic open subsets of the L-topology in terms of ties or primitive maps of functions. We use this to verify that the L-topology is strictly coarser than the well-known Lipschitz norm topology. We then develop a fundamental theorem of calculus of second order in finite dimensions showing that the continuous integral operator from the continuous Scott domain of non-empty convex and compact valued functions to the continuous Scott domain of ties is inverse to the continuous operator induced by the L-derivative.
Lipschitz映射的弱拓扑和可微算子
我们证明了Scott拓扑导出了Banach空间上实值Lipschitz映射的拓扑,我们称之为l拓扑。它是l -导数算子作为二阶泛函将Lipschitz函数空间映射到具有Scott拓扑的非空弱*紧凸值映射的函数空间的连续的最弱拓扑。对于有限维欧几里德空间,当l -导数和Clarke梯度重合时,我们提供了l -拓扑的基本开放子集的简单表征,即函数的联系或原始映射。我们用它来验证l拓扑比众所周知的Lipschitz范数拓扑严格地粗糙。然后,我们发展了有限维二阶微积分的一个基本定理,证明了从非空凸紧值函数的连续Scott域到系的连续Scott域的连续积分算子与由l导数诱导的连续算子是逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信