VANT: A Visual Analytics System for Refining Parallel Corpora in Neural Machine Translation

Sebeom Park, S. Lee, Youngtaek Kim, Hyeon Jeon, Seokweon Jung, Jinwook Bok, Jinwook Seo
{"title":"VANT: A Visual Analytics System for Refining Parallel Corpora in Neural Machine Translation","authors":"Sebeom Park, S. Lee, Youngtaek Kim, Hyeon Jeon, Seokweon Jung, Jinwook Bok, Jinwook Seo","doi":"10.1109/PacificVis53943.2022.00029","DOIUrl":null,"url":null,"abstract":"The quality of parallel corpora used to train a Neural Machine Translation (NMT) model can critically influence the model's performance. Various approaches for refining parallel corpora have been introduced, but there is still much room for improvements, such as enhancing the efficiency and the quality of refinement. We introduce VANT, a novel visual analytics system for refining parallel corpora used in training an NMT model. Our system helps users to readily detect and filter noisy parallel corpora by (1) aiding the quality estimation of individual sentence pairs within the corpora by providing diverse quality metrics (e.g., cosine similarity, BLEU, length ratio) and (2) allowing users to visually examine and manage the corpora based on the pre-computed metrics scores. Our system's effectiveness and usefulness are demonstrated through a qualitative user study with eight participants, including four domain experts with real-world datasets.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis53943.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The quality of parallel corpora used to train a Neural Machine Translation (NMT) model can critically influence the model's performance. Various approaches for refining parallel corpora have been introduced, but there is still much room for improvements, such as enhancing the efficiency and the quality of refinement. We introduce VANT, a novel visual analytics system for refining parallel corpora used in training an NMT model. Our system helps users to readily detect and filter noisy parallel corpora by (1) aiding the quality estimation of individual sentence pairs within the corpora by providing diverse quality metrics (e.g., cosine similarity, BLEU, length ratio) and (2) allowing users to visually examine and manage the corpora based on the pre-computed metrics scores. Our system's effectiveness and usefulness are demonstrated through a qualitative user study with eight participants, including four domain experts with real-world datasets.
神经网络机器翻译中并行语料库的可视化分析系统
用于训练神经机器翻译(NMT)模型的平行语料库的质量对模型的性能有重要影响。并行语料库的精炼方法有很多,但仍有很大的改进空间,如提高精炼的效率和质量。我们介绍了一种新的视觉分析系统VANT,用于精炼用于训练NMT模型的并行语料库。我们的系统通过以下方式帮助用户轻松检测和过滤有噪声的平行语料库:(1)通过提供不同的质量指标(例如,余弦相似度,BLEU,长度比)来帮助语料库中单个句子对的质量估计;(2)允许用户基于预先计算的指标分数来可视化地检查和管理语料库。我们的系统的有效性和有用性是通过一个定性的用户研究与八个参与者,包括四个领域的专家与现实世界的数据集证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信