A/D Alleviator: Reducing Analog-to-Digital Conversions in Compute-In-Memory with Augmented Analog Accumulation

Weidong Cao, Xuan Zhang
{"title":"A/D Alleviator: Reducing Analog-to-Digital Conversions in Compute-In-Memory with Augmented Analog Accumulation","authors":"Weidong Cao, Xuan Zhang","doi":"10.1109/ISCAS46773.2023.10181895","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CIM) has shown great promise in accelerating numerous deep-learning tasks. However, existing analog CIM (ACIM) accelerators often suffer from frequent and energy-intensive analog-to-digital (A/D) conversions, severely limiting their energy efficiency. This paper proposes A/D Alleviator, an energy-efficient augmented analog accumulation data flow to reduce A/D conversions in ACIM accelerators. To make it, switched-capacitor-based multiplication and accumulation circuits are used to connect the bitlines (BLs) of memory crossbar arrays and the final A/D conversion stage. In this way, analog partial sums can be accumulated both spatially across all adjacent BLs that store high-precision weights and temporarily across all input cycles before the final quantization, thereby minimizing the need for explicit A/D conversions. Evaluations demonstrate that A/D Alleviator can improve energy efficiency by 4.9× and 1.9× with a high signal-to-noise ratio, as compared to state-of-the-art ACIM accelerators.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compute-in-memory (CIM) has shown great promise in accelerating numerous deep-learning tasks. However, existing analog CIM (ACIM) accelerators often suffer from frequent and energy-intensive analog-to-digital (A/D) conversions, severely limiting their energy efficiency. This paper proposes A/D Alleviator, an energy-efficient augmented analog accumulation data flow to reduce A/D conversions in ACIM accelerators. To make it, switched-capacitor-based multiplication and accumulation circuits are used to connect the bitlines (BLs) of memory crossbar arrays and the final A/D conversion stage. In this way, analog partial sums can be accumulated both spatially across all adjacent BLs that store high-precision weights and temporarily across all input cycles before the final quantization, thereby minimizing the need for explicit A/D conversions. Evaluations demonstrate that A/D Alleviator can improve energy efficiency by 4.9× and 1.9× with a high signal-to-noise ratio, as compared to state-of-the-art ACIM accelerators.
A/D缓解:通过增强模拟积累减少内存计算中的模数转换
内存计算(CIM)在加速许多深度学习任务方面显示出巨大的前景。然而,现有的模拟CIM (ACIM)加速器经常遭受频繁和能源密集型的模拟到数字(A/D)转换,严重限制了它们的能源效率。本文提出了A/D缓解器,一种节能的增强模拟积累数据流,以减少ACIM加速器中的A/D转换。为此,使用基于开关电容的乘法和累加电路将存储交叉条阵列的位线与最后的A/D转换阶段连接起来。通过这种方式,模拟部分和可以在空间上跨越存储高精度权重的所有相邻bl,并在最终量化之前暂时跨越所有输入周期,从而最大限度地减少对显式A/D转换的需求。评估表明,与最先进的ACIM加速器相比,A/D缓解器可以以高信噪比提高4.9倍和1.9倍的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信