Deep Near Infrared Colorization with Semantic Segmentation and Transfer Learning

Fengqiao Wang, Lu Liu, Cheolkon Jung
{"title":"Deep Near Infrared Colorization with Semantic Segmentation and Transfer Learning","authors":"Fengqiao Wang, Lu Liu, Cheolkon Jung","doi":"10.1109/VCIP49819.2020.9301788","DOIUrl":null,"url":null,"abstract":"Although near infrared (NIR) images contain no color, they have abundant and clear textures. In this paper, we propose deep NIR colorization with semantic segmentation and transfer learning. NIR images are capable of capturing invisible spectrum (700-1000 nm) that is quite different from visible spectrum images. We employ convolutional layers to build relationship between single NIR images and three-channel color images, instead of mapping to Lab or YCbCr color space. Moreover, we use semantic segmentation as global prior information to refine colorization of smooth regions for objects. We use color divergence loss to further optimize NIR colorization results with good structures and edges. Since the training dataset is not enough to capture rich color information, we adopt transfer learning to get color and semantic information. Experimental results verify that the proposed method produces a natural color image from single NIR image and outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Although near infrared (NIR) images contain no color, they have abundant and clear textures. In this paper, we propose deep NIR colorization with semantic segmentation and transfer learning. NIR images are capable of capturing invisible spectrum (700-1000 nm) that is quite different from visible spectrum images. We employ convolutional layers to build relationship between single NIR images and three-channel color images, instead of mapping to Lab or YCbCr color space. Moreover, we use semantic segmentation as global prior information to refine colorization of smooth regions for objects. We use color divergence loss to further optimize NIR colorization results with good structures and edges. Since the training dataset is not enough to capture rich color information, we adopt transfer learning to get color and semantic information. Experimental results verify that the proposed method produces a natural color image from single NIR image and outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).
基于语义分割和迁移学习的深近红外着色
虽然近红外(NIR)图像不含颜色,但它们具有丰富而清晰的纹理。本文提出了一种基于语义分割和迁移学习的深度近红外着色方法。近红外图像能够捕获与可见光谱图像截然不同的不可见光谱(700-1000 nm)。我们使用卷积层来建立单个近红外图像和三通道彩色图像之间的关系,而不是映射到Lab或YCbCr颜色空间。此外,我们使用语义分割作为全局先验信息来改进物体光滑区域的着色。我们利用色散损失进一步优化近红外着色结果,使其具有良好的结构和边缘。由于训练数据集不足以捕获丰富的颜色信息,我们采用迁移学习来获取颜色和语义信息。实验结果表明,该方法可以从单幅近红外图像中生成自然彩色图像,并且在峰值信噪比(PSNR)和结构相似性(SSIM)方面优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信