Data Association for Tracking Extended Targets

Florian Meyer, M. Win
{"title":"Data Association for Tracking Extended Targets","authors":"Florian Meyer, M. Win","doi":"10.1109/MILCOM47813.2019.9020858","DOIUrl":null,"url":null,"abstract":"The sum-product algorithm for data association (SPADA) provides a highly effective, efficient, and scalable solution to the probabilistic data association problem, a major challenge in multitarget tracking. Similar to most existing data association algorithms, the SPADA is also based on the conventional data association assumption: Targets either produce no measurements or produce a single measurement at each time step and sensor. This paper presents the results of experiments with an extension of SPADA that is suitable for the case where targets can generate multiple measurements. This extension is general in the sense that the number of measurements generated by a target is modeled by an arbitrary truncated probability mass function (PMF) and enables extended target tracking (ETT) by performing probabilistic multiple-measurement to target associations. ETT is especially suitable for inexpensive high-resolution millimeter-wave radar sensors. We demonstrate the favorable performance-complexity tradeoff of the proposed method in a challenging tracking problem involving three closely-spaced targets that produce multiple measurements.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9020858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The sum-product algorithm for data association (SPADA) provides a highly effective, efficient, and scalable solution to the probabilistic data association problem, a major challenge in multitarget tracking. Similar to most existing data association algorithms, the SPADA is also based on the conventional data association assumption: Targets either produce no measurements or produce a single measurement at each time step and sensor. This paper presents the results of experiments with an extension of SPADA that is suitable for the case where targets can generate multiple measurements. This extension is general in the sense that the number of measurements generated by a target is modeled by an arbitrary truncated probability mass function (PMF) and enables extended target tracking (ETT) by performing probabilistic multiple-measurement to target associations. ETT is especially suitable for inexpensive high-resolution millimeter-wave radar sensors. We demonstrate the favorable performance-complexity tradeoff of the proposed method in a challenging tracking problem involving three closely-spaced targets that produce multiple measurements.
跟踪扩展目标的数据关联
数据关联和积算法(sum-product algorithm for data association, SPADA)为概率数据关联问题提供了一种高效、可扩展的解决方案,这是多目标跟踪中的一个主要挑战。与大多数现有的数据关联算法类似,SPADA也是基于传统的数据关联假设:目标在每个时间步长和传感器上要么不产生测量,要么产生单个测量。本文介绍了SPADA扩展的实验结果,该扩展适用于目标可以产生多个测量值的情况。这种扩展是通用的,因为目标生成的测量数量由任意截断概率质量函数(PMF)建模,并通过对目标关联执行概率多重测量来实现扩展目标跟踪(ETT)。ETT特别适用于廉价的高分辨率毫米波雷达传感器。我们在一个具有挑战性的跟踪问题中展示了所提出方法的良好性能-复杂性权衡,该问题涉及三个紧密间隔的目标,产生多个测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信