Gumbel Distribution Adjustment Improvement for Accurate Extreme Values Prediction

Nesrine Khabou, I. Rodriguez, Oumayma Jameleddine, Amal Mateur
{"title":"Gumbel Distribution Adjustment Improvement for Accurate Extreme Values Prediction","authors":"Nesrine Khabou, I. Rodriguez, Oumayma Jameleddine, Amal Mateur","doi":"10.1109/AICCSA53542.2021.9686828","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on using the Extreme Value Theory (EVT), especially the Gumbel Distribution (GD) for Extreme values prediction in a time series. GD is used to model the distribution of extreme values in a time series. Furthermore, if a time series formed by extreme values follows (can be adjusted to) the Gumbel distribution, the GD parameters can be estimated on the basis of the observed data, then these parameters are used to predict future extreme values/events. However, in the literature, most studies rely on a visual adjustment method to prove that the time series formed by extreme values follows the Gumbel Distribution. In this paper, our main contribution consists on studying different adjustment methods, compare them and use an automated mathematical adjustment method to demonstrate the adjustment of the studied time series to the Gumbel Distribution.","PeriodicalId":423896,"journal":{"name":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA53542.2021.9686828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on using the Extreme Value Theory (EVT), especially the Gumbel Distribution (GD) for Extreme values prediction in a time series. GD is used to model the distribution of extreme values in a time series. Furthermore, if a time series formed by extreme values follows (can be adjusted to) the Gumbel distribution, the GD parameters can be estimated on the basis of the observed data, then these parameters are used to predict future extreme values/events. However, in the literature, most studies rely on a visual adjustment method to prove that the time series formed by extreme values follows the Gumbel Distribution. In this paper, our main contribution consists on studying different adjustment methods, compare them and use an automated mathematical adjustment method to demonstrate the adjustment of the studied time series to the Gumbel Distribution.
精确极值预测的甘贝尔分布调整改进
本文主要研究了利用极值理论(EVT),特别是Gumbel分布(GD)进行时间序列极值预测。GD用于模拟时间序列中极值的分布。此外,如果由极值组成的时间序列服从(可调整为)Gumbel分布,则可以根据观测数据估计GD参数,然后使用这些参数来预测未来的极值/事件。然而,在文献中,大多数研究依靠视觉平差的方法来证明由极值组成的时间序列服从甘贝尔分布。在本文中,我们的主要贡献在于研究不同的平差方法,对它们进行比较,并使用自动数学平差方法来演示所研究的时间序列对Gumbel分布的平差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信