A Set-Medoids Vector Batch SOM Algorithm Based on Multiple Dissimilarity Matrices

F. D. Carvalho, Eduardo C. Simões
{"title":"A Set-Medoids Vector Batch SOM Algorithm Based on Multiple Dissimilarity Matrices","authors":"F. D. Carvalho, Eduardo C. Simões","doi":"10.1109/BRACIS.2015.13","DOIUrl":null,"url":null,"abstract":"This paper gives a batch SOM algorithm that is able to training a Kohonen map taking into account simultaneously several dissimilarity matrices, that are obtained using different sets of variables and dissimilarity functions. This algorithm is designed to provide a partition and a set-medoids vector representative for each cluster, and learn a relevance weight on the training for each dissimilarity matrix by optimizing an objective function. These relevance weights change at each algorithm's iteration and are different from one cluster to another. The proposed algorithm provides a collaborative role of the different dissimilarity matrices, aiming to cluster and visualizing the data while preserving their topology. Several examples illustrate the usefulness of the proposed algorithm.","PeriodicalId":416771,"journal":{"name":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper gives a batch SOM algorithm that is able to training a Kohonen map taking into account simultaneously several dissimilarity matrices, that are obtained using different sets of variables and dissimilarity functions. This algorithm is designed to provide a partition and a set-medoids vector representative for each cluster, and learn a relevance weight on the training for each dissimilarity matrix by optimizing an objective function. These relevance weights change at each algorithm's iteration and are different from one cluster to another. The proposed algorithm provides a collaborative role of the different dissimilarity matrices, aiming to cluster and visualizing the data while preserving their topology. Several examples illustrate the usefulness of the proposed algorithm.
一种基于多不相似矩阵的集介质向量批处理SOM算法
本文给出了一种批量SOM算法,该算法能够同时训练Kohonen映射,该映射考虑了使用不同的变量集和不相似函数得到的多个不相似矩阵。该算法通过对目标函数的优化,为每个聚类提供一个分区和一个集介质向量的代表,并在每个不相似矩阵的训练上学习一个相关权值。这些相关性权重在每个算法迭代时都会发生变化,并且在不同的聚类之间是不同的。该算法提供了不同的不相似矩阵的协同作用,旨在聚类和可视化数据,同时保持其拓扑结构。几个例子说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信